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ABSTRACT

Steven M. Seubert, Advisor

A diagonal operator on the space of functions holomorphic on a disk of finite radius

is a continuous linear operator having the monomials as eigenvectors. In this dissertation,

necessary and sufficient conditions are given for a diagonal operator to be cyclic. Necessary

and sufficient conditions are also given for a cyclic diagonal operator to admit spectral

synthesis, that is, to have as closed invariant subspaces only the closed linear span of sets

of eigenvectors. In particular, it is shown that a cyclic diagonal operator admits synthesis if

and only if one vector, not depending on the operator, is cyclic. It is also shown that this

is equivalent to existence of sequences of polynomials which seperate and have minimum

growth on the eigenvalues of the operator.



iii

This dissertation is dedicated to my Lord and Savior Jesus Christ.

Worthy are You, our Lord and our God, to receive glory and honor and power; for You

created all things, and because of Your will they existed, and were created.

-Revelation 4:11

We give You thanks, O Lord God, the Alighty, Who are and Who were, because You have

taken Your great power and have begun to reign.

-Revelation 11:17

Great and marvelous are Your works, O Lord God, the Almighty; Righteous and true are

Your ways, King of the nations! Who will not fear, O Lord, and glorify Your name? For

You alone are holy; For all the nations will come and worship before You, for Your

righteous acts have been revealed.

-Revelation 15:3,4



iv

ACKNOWLEDGMENTS

1. Soli Deo Gloria. I give thanks to Jesus Christ for giving me salvation, my friends, my

family, wealth, and my mathematical ability. Surely I am blessed.

2. To Susan Jacob, Loretta Haugh, and Fred Schmitt, thank you for believing in me when

I was a mediocre student. To Pat Morgan, thank you for being such a good role model,

mentor, and teacher in my high school years. Thank you for boldly sharing the gospel

with me.

3. Thank you David Hahn for showing me the power, beauty, and rigor of mathematics.

Thank you Jeffrey Riedl for first directing my research and showing me the impor-

tance of simple examples. Thank you Sachi Sakthivel for sitting on my dissertation

committee. Thank you Juan Bes, Neal Carothers, and Kit Chan for teaching me the

rudiments of analysis. Thank you Alex Izzo for being a challenging teacher and an

excellent expositor and putting up with my silliness. Thank you Steven Seubert for

all of your advice throughout my career here. Thank you for giving me the freedom to

explore topics as I saw fit. Thank you for teaching me the importance of a literature

review.

4. Thank you to my parents Greg Deters, Wendy Grant, and Charles Grant (R.I.P.).

Thank you for your ceaseless love and encouragement and endless supplies.

5. Thank you to Bowling Green Covenant Church. You have been a wonderful church

family. You have taught me the importance of hospitality. I hope to emulate what has

been modeled for me here. In particular, thank you to Michael and Beth Manahan

and Michael and Nancy Sanderson. Thank you for opening up your hearts and homes

to me.

6. Thank you to all of my friends who hung out with me along the way. You have

made the journey quite enjoyable. In particular, thank you Steve Dinda, Sean Berger,



v

Ryan Vigus, Joel Manahan, Ian Manahan, Tumpa Bhattacharyya, Suzanne Miller, and

Elizabeth Krumrei. Thanks to Brandon Clark, the best roomate and friend a guy can

have. You have taught me a lot and you pay the bills on time.

7. Thanks to Nate Iverson for preparing the class file for this dissertation.



vi

Table of Contents

CHAPTER 1: Spaces Of Functions Analytic In A Disk 1

1.1 Background And Overview Of Diagonal Operators . . . . . . . . . . . . . . . 1

1.2 The Space HR And Convergence In Terms Of Macluarin Coefficients . . . . . 5

1.3 The Dual Of HR And Of H(C) . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 A Linear Homeomorphism Between H1 and H(G) . . . . . . . . . . . . . . . 9

1.5 The Strong And Weak Operator Topology On C(H(G)) . . . . . . . . . . . 10

CHAPTER 2: Diagonal Operators 16

2.1 Definition And Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 A Natural Embedding Of H1 Into C(H1) . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 3: Cyclic Diagonal Operators 24

3.1 Definition Of And Criteria For Cyclicity . . . . . . . . . . . . . . . . . . . . 24

3.2 Cyclicity Of Vectors In Terms Of Coefficient Decay Rates . . . . . . . . . . . 26

3.3 Common Cyclic Vectors For Families Of Diagonal Operators . . . . . . . . . 30

CHAPTER 4: Synthetic Diagonal Operators 32

4.1 Definition Of And Equivalences For Synthesis . . . . . . . . . . . . . . . . . 33

4.2 Examples Of Synthetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 5: Polynomial Approximation And Synthesis 48

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vii

5.2 Proof Of Synthesis By Polynomial Approximation . . . . . . . . . . . . . . . 51

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY 56



1

CHAPTER 1

Spaces Of Functions Analytic In A

Disk

1.1 Background And Overview Of Diagonal Operators

The theme of this document is invariant subspaces. Let X be a topological vector space and

consider some continuous linear operator T : X → X. A classical problem in such a situation

has been to determine the closed, invariant subspaces of T . Indeed, such considerations are

what give rise to theorems on canonical forms of matrices. Since the matter has already

been settled in finite dimensional cases, we will concern ourselves with infinite dimensional

vector spaces.

The first infinite dimensional space one usually considers is the separable Hilbert space H.

The space H has a structure which closely resembles Cn while still being infinite dimensional.

We may now consider some operator on H and attempt to determine its closed invariant

subspaces. Taking inspiration from the finite dimensional case, a first approach would be to

determine the eigenvectors of the operator. It is always the case that the closure of the span

of some set of eigenvectors is a closed invariant subspace. However, not all operators on H

have eigenvalues. For example, the forward shift operator has no eigenvalues. In fact, it is
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not known whether or not every operator on H has an invariant subspace. This is a famous

open problem known as The Invariant Subspace Problem.

Since the Invariant Subspace Problem is generally considered to be difficult, one typically

specifies a class of operators and studies the invariant subspaces of those operators. That is

the approach that we will take here. In particular, we will consider an analogue of diagonal

operators on H. On H a diagonal operator D is an operator such that Den = λnen for some

λn ∈ C and some orthonormal basis {en : n ≥ 1}. Such operators are analogues of diagonal

matrices and have been well studied. In fact, compact self-adjoint operators are diagonal

with respect to an appropriate basis. What is interesting is that even though diagonal

operators look innocuous, they sometimes have unexpected subspaces. For instance, it is

obvious that the closure of subspaces spanned by some subset of {en : n ≥ 0} are invariant

for D. However, is that all of them? Not all of the time. In 1921, Wolff [22] gave an

example of a diagonal operator with a closed invariant subspace which was not the closure of

a subspace spanned by some subset of {en : n ≥ 0}. So it seems that even diagonal operators

can exhibit interesting behavior. However, there is a list of conditions given in Theorem 1.1

which are equivalent to D having only the obvious invariant subspaces.

As noted before, it is always the case that the closed linear span of some set of eigenvectors

is an invariant subspace. Based on this, we make the following defintion. A continuous

linear operator T : X → X is said to admit spectral synthesis if every closed invariant

subspace M for T equals the closed linear span of the eigenvectors for T contained in M .

Operators which admit spectral synthesis are called synthetic. Observe that an operator

being synthetic is a type of minimality condition on the number of closed invariant subspaces

of that operator. Loosely speaking, an operator is synthetic if the closed invariant subspaces

are precisely the obvious ones. Hence, the discussion in the preceding paragraph was about

which diagonal operators were synthetic and which were not.

Clearly, the subspaces X and {0} are both invariant subspaces. Such subspaces are

called trivial and are not considered of interest. What are some other invariant subspaces?
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The easiest way to obtain invariant subspaces is to build them. To this end, choose some

x ∈ X such that x 6= 0. We shall build the smallest closed invariant subspace M containing

x. What has to be in M? Certainly x ∈ M . However, since M is invariant under T ,

T (M) ⊆ M . Hence, Tx ∈ M . Also, since Tx ∈ M , TTx = T 2x ∈ M . This would

imply that TT 2x = T 3x ∈ M . More generally, it must be the case that T nx ∈ M for

n ≥ 0. Moreover, since M is a subspace, span({T nx : n ≥ 0}) ⊆ M . Finally, since M is

closed, span({T nx : n ≥ 0}) ⊆M . Since M is supposed to be the smallest, closed, invariant

subspace containing x and span({T nx : n ≥ 0}) is a closed, invariant subspace containing x,

it must be that span({T nx : n ≥ 0}) = M . Thus, it is easy to describe the smallest, closed,

invariant subspaces containing any given vector x. The question becomes whether or not

the subspace is trivial. Since x 6= 0, it is not the case that M = {0}. However, it may be

the case that M = X.

For example, let X = C([0, 1]), the space of continuous functions on the interval [0, 1]

with the supremum norm. Define T : X → X by (Tf)(x) = xf(x). The operator T is

a continuous linear operator. However, by the Weierstrauss Approximation Theorem the

smallest, closed, invariant subspace containing the function f ≡ 1 is X. Such behavior is

common enough that it has its own name.

Given a a vector x ∈ X, the orbit of x under T is the set {T nx : n ≥ 0}. A vector x ∈ X

is said to be cyclic for T if the closed linear span of the orbit is all of X. Operators which

have a cyclic vector are said to be cyclic. The preceding paragraph asserts that f ≡ 1 is a

cyclic vector for T . A non-zero vector is cyclic if and only if it is not contained in a proper

closed invariant subspace. Hence, the set of cyclic vectors for an operator is the complement

of the union of the proper closed invariant subspaces. Finally, observe that the invariant

subspace problem is asking whether or not every operator on H has a non-trivial, non-cyclic

vector.

Determining when a diagonal operator on H is synthetic is a problem dating back to at

least 1921. It involves the work of Wolff [22], Wermer [21], Sarason [16] and [17], Nikol’skĭi
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[12] and [13], Brown, Shields, and Zeller [2], and Sibilev [20]. The relevant parts of their

work have been combined to form the following theorem.

Theorem 1.1 Let H be a separable complex Hilbert space and let D be any bounded linear

operator on H for which there exists an orthonormal basis {en} for H and a sequence {λn}

of complex numbers for which Den = λnen for all n ≥ 0. Then {λn} is bounded. Moreover, D

is cyclic if and only if λm 6= λn for all m 6= n, and in this case, the following are equivalent:

1. The operator D admits spectral synthesis.

2. There does not exist a non-trivial sequence (wn) ∈ `1 for which 0 =
∑∞

n=0wnλ
k
n for all

k ≥ 0.

3. There does not exist a non-trivial sequence (wn) ∈ `1 for which the Wolff-Denjoy series∑∞
n=0

wn

z−λn
= 0 for all z with |z| > sup({|λn| : n ≥ 0}).

4. There does not exist a non-trivial sequence (wn) ∈ `1 for which the complex measure

µ ≡
∑∞

n=0wnδ{λn} consisting of point masses at the λn with weights wn annihilates the

polynomials.

5. There does not exist a non-trivial sequence (wn) ∈ `1 for which the exponential series∑∞
n=0wne

λnz = 0 for all z ∈ C.

6. Every closed invariant subspace of D is invariant for the adjoint D∗ of D.

7. The adjoint D∗ of D is in the closed algebra generated by the identity operator and D

in the strong operator topology.

8. If, in addition, the λn lie inside a Jordan region G and accumulate only on the

boundary of G, then conditions 1 through 7 are equivalent to sup {|f(z)| : z ∈ G} =

sup {|f(λn)| : n ≥ 0} for f ∈ H(G) and bounded (where H(G) denotes the space of

functions analytic on G).
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In Chapter 4, we shall prove Theorem 4.1, an analogue of the preceding theorem for the

case of diagonal operators on the space of functions analytic on a disk of finite radius. The

proof of this theorem should indicate why the seemingly unrelated statements in Theorem

1.1 are equivalent. We shall then extend Theorem 4.1 result with Theorem 4.3. In particular,

we shall demonstrate that spectral synthesis is equivalent to the cyclicity of one particular

vector as well as the existence of sequences of polynomials which seperate, and have a minimal

growth condition at, the eigenvalues of the operator.

In this document, we will consider the analogue of diagonal operators on the space of

functions analytic on a disc of some finite radius and determine when cyclic operators are

synthetic. In the rest of this chapter, we will record the salient features of H(B(0, R)).

In Chapter 2, we will collect introductory information about diagonal operators and show

how H(B(0, 1)) can be embedded into the space of diagonal operators. In Chapter 3, we

will discuss the cyclicity of diagonal operators and the relationship between the cyclicity of

vectors and the decay rate of their coefficients. Chapter 4 will consist in giving necessary and

sufficient conditions for cyclic diagonal operators to be synthetic. We shall also demonstrate

that a large family of cyclic diagonal operators is synthetic. Finally, in Chapter 5, we will

construct polynomials whose existence is demonstrated in Chapter 4. Throughout we will

compare and contrast our present case with that of the Hilbert space case.

1.2 The Space HR And Convergence In Terms Of Maclu-

arin Coefficients

For any R ∈ (0,∞), let HR = H(B(0, R)) denote the space of functions analytic in the

disk B(0, R) of radius R centered about the origin. Let H(C) denote the space of entire

functions. We will almost always think of functions in HR and H(C) in terms of their power

series. If f ∈ HR or f ∈ H(C) and f(z) =
∑∞

n=0 fnz
n, then, from the Radius of Convergence

Formula, we have that lim supn→∞ |fn|
1
n ≤ 1

R
or lim supn→∞ |fn|

1
n = 0, respectively. Define
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a metric ρ on HR by

ρ(f, g) =
∞∑
n=1

1

2n
·
‖f − g‖R(1− 1

n
)

1 + ‖f − g‖R(1− 1
n

)

and a metric σ on H(C) by

σ(f, g) =
∞∑
n=1

1

2n
· ‖f − g‖n

1 + ‖f − g‖n

where ‖f − g‖r = sup|z|≤r |f(z)− g(z)| (see Conway [4] p. 142 - 152). Note that convergence

in these metrics is equivalent to uniform convergence on compact sets (see Conway [4]).

Moreover, both of these spaces are examples of complete, locally convex spaces. However,

they are not Banach spaces since it is not always true that ρ(cf, 0) = cρ(f, 0). For instance,

take f ≡ 1 and c = 2.

Since we will be viewing functions in HR and H(C) almost entirely in terms of their

Maclaurin series, it will be convenient to have a test for convergence in terms of the series

expansions of a sequence of functions. The criterion for convergence is the content of the

next lemma and theorem.

Lemma 1.1 Let G ⊂ C be open, a ∈ G, and fα ∈ H(G) such that (fα) is a net with

limα fα = 0 be given. If fα(z) =
∑∞

k=0 fα,k(z − a)k is fα’s expansion, then limα fα,k = 0 for

each k ≥ 0.

Proof. Choose some r such that 0 < r < dist(a, ∂G). Then (fα) converges uniformly to

0 on B(a, r). Write Mα = sup({|fn(z)| : |z − a| ≤ r}) and note that Mα → 0. Then by

Cauchy’s Estimate,

|fα,k| =
1

k!
|f (k)
α (a)| ≤ 1

k!
· k!Mα

rk
→ 0.

Theorem 1.2 Let R and (fn) ⊂ HR such that 0 < R <∞ and fn(z) =
∑∞

k=0 fn,kz
k be given.

Then fn → 0 in HR if and only if limn→∞ fn,k = 0 for each k and lim supn→∞ sup({|fn,k|
1
k :

k ≥ 1}) ≤ 1
R

.
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Proof. First suppose that limn→∞ fn,k = 0 for each k and lim supn→∞ sup({|fn,k|
1
k : k ≥

1}) ≤ 1
R

. Let E ⊂ B(0, R) be compact and ε > 0 be given. Write r = sup({|z| : z ∈ E})

and note that r < R. Choose some t ∈ ( 1
R
, 1
r
), some K such that

∑∞
k>K(tr)k < ε

2
, and

some N1 such that sup({|fn,k|
1
k : k ≥ 1}) < t for n ≥ N1. Hence, for n ≥ N1 and k ≥ 1

we have that |fn,k| < tk. Let r0 = max({r, 1}). By assumption, for fixed k we have that

|fn,k| → 0. Choose N2 such that |fn,k| < ε
2(K+1)rK

0
for 0 ≤ k ≤ K and n ≥ N2, and define

N = max({N1, N2}). Then for n ≥ N and z ∈ E, we have that

|fn(z)| ≤
K∑
k=0

|fn,k|rk +
∞∑
k>K

|fn,k|rk ≤
K∑
k=0

|fn,k|rK0 +
∞∑
k>K

(tr)k <
ε

2
+
ε

2
= ε.

Thus, fn → 0 in HR.

Now suppose that fn → 0 in HR. By Lemma 1.1, we know that limn→∞ fn,k = 0 for

each fixed k. To show that lim supn→∞ sup({|fn,k|
1
k : k ≥ 1}) ≤ 1

R
, let r ∈ (0, R) be given.

Since fn → 0 uniformly on compact subsets of B(0, R), there exists some N such that

|fn(z)| ≤ 1 for all z ∈ B(0, r) whenever n ≥ N . Then by Cauchy’s Estimate, we have that

|fn,k| ≤ 1
rk for k ≥ 1 whenever n ≥ N . Hence, |fn,k|

1
k ≤ 1

r
for k ≥ 1 whenever n ≥ N .

Thus, sup({|fn,k|
1
k : k > 0}) ≤ 1

r
for n ≥ N . Since r ∈ (0, R) was arbitrary, we have that

lim supn→∞ sup({|fn,k|
1
k : k ≥ 1}) ≤ 1

R
.

The corresponding result for H(C) was proven by Iyer [8]: In H(C), fn → 0 if and only if

lim supn→∞ sup({|fn,k|
1
k : k ≥ 1}) = 0 and fn,0 → 0. The above result has nice applications

when combined with the following lemma.

Lemma 1.2 Let r ≥ 0 and an,k ≥ 0 for n ≥ 1 and k ≥ 0 such that an,k → 0 as n→∞ for

each k ≥ 0 be given. Then there exists a j ≥ 0 such that lim supn→∞ sup({an,k : k > j}) ≤ r

if and only if for all j ≥ 0 we have lim supn→∞ sup({an,k : k > j}) ≤ r.

Proof. Necessity is trivial. For sufficiency, suppose lim supn→∞ sup({an,k : k > j0}) ≤ r

for some j0 and let j ≥ 0 and ε > 0 be given. Note that if j ≥ j0, then sup({an,k :

k > j}) ≤ sup({an,k : k > j0}). This implies that lim supn→∞ sup({an,k : k > j} ≤
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lim supn→∞ sup({an,k : k > j0}) ≤ r. Now suppose that j < j0. Choose N1 such that

sup({an,k : k > j0}) < r + ε for n ≥ N1 and N2 such that an,k < r + ε for n ≥ N2 and 0 ≤

k ≤ j0. Write N = max({N1, N2}) and observe that for n ≥ N , sup({an,k : k > j}) < r + ε.

Since ε was arbitrary we have that lim supn→∞ sup({an,k : k > j}) ≤ r.

1.3 The Dual Of HR And Of H(C)

The next result establishes the dual of HR and H(C) and comes from [3] p. 116.

Theorem 1.3 1. If 0 < R < ∞, L ∈ H∗R, and `n = Lzn, then lim supn→∞ |`n|
1
n < R.

Conversely, if lim supn→∞ |`n|
1
n < R, then there exists an L ∈ H∗R such that Lf =∑∞

n=0 fn`n whenever f(z) =
∑∞

n=0 fnz
n.

2. If L ∈ H(C)∗, and `n = Lzn, then lim supn→∞ |`n|
1
n <∞. Conversely, if

lim supn→∞ |`n|
1
n < ∞, then there exists an L ∈ H(C)∗ such that Lf =

∑∞
n=0 fn`n

whenever f(z) =
∑∞

n=0 fnz
n.

Proof.

1. If lim supn→∞ |`n|
1
n ≥ R, there is some subsequence (`nk

) such that limk→∞ |`nk
|

1
nk ≥ R

and |`nk
| > 0 for all k. Define the sequence (fn) by fn = 0 if n 6= nk for some k and

fnk
= 1

`nk
. Note that lim supn→∞ |fn|

1
n = lim supk→∞ |fnk

|
1

nk = lim supk→∞
1

|`nk
|

1
nk

≤ 1
R

and define f ∈ HR by f(z) =
∑∞

n=0 fnz
n. Hence, by the continuity of L, we have that

Lf =
∑∞

n=0 fn`n =
∑∞

k=0
1
`nk
`nk

= ∞. Since this would imply that L /∈ H∗R, we must

have that lim supn→∞ |`n|
1
n < R.

Now suppose that lim supn→∞ |`n|
1
n < R. Define L : HR → C by Lf =

∑∞
n=0 fn`n

where f(z) =
∑∞

n=0 fnz
n. To see that L is continuous, define Ln : HR → C by Lnf =∑n

k=0 fk`k where f(z) =
∑∞

k=0 fkz
k. Clearly, Ln ∈ H∗R is continuous and Lnf → Lf

for all f ∈ HR. Therefore, by the Banach-Steinhaus Theorem, L is continuous.

2. The proof of part 2 of this theorem is similar to the proof of part 1.
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1.4 A Linear Homeomorphism Between H1 and H(G)

Recall that the Riemann Mapping Theorem states that simply connected regions come in

two categories: C and regions that are conformally equivalent to the disc. As a result, B(0, 1)

and B(0, 2) are much more similar than B(0, 1) and C. This would further suggest that H1

and H2 are more similar than H1 and H(C). The next result establishes this more generally.

Theorem 1.4 Let G be a simply connected region such that G 6= C and let f : G→ B(0, 1)

be a conformal map. Define T : H(G) → H1 by Tg = g ◦ f−1. The map T is a linear

homeomorphism.

Proof. Clearly, T is linear. Next suppose that gn → g in H(G) and gn ◦ f−1 → h in H1 and

let z ∈ B(0, 1) be given. Then since gn → g in H(G), (gn ◦ f−1)(z)→ (g ◦ f−1)(z). However,

it is also the case that (gn ◦ f−1)(z) → h(z). Thus, h = g ◦ f−1 = Tg and T is continuous

by the Closed Graph Theorem. Since f has an inverse, T is injective. Given some h ∈ H1

observe that h ◦ f ∈ H(G) and T (h ◦ f) = h ◦ f ◦ f−1 = h. Thus, T is surjective. Therefore,

T is a homeomorphim by the Open Mapping Theorem.

As the above theorem indicates, there are really only two types of spaces of functions

analytic on a disk: H1 and H(C). We shall see later that these two spaces are the only

important ones for questions of cyclicity and synthesis in our setting. We shall also see

that the question of synthesis yields much different results for each space. The following

observation is also occasionally useful.

Proposition 1.1 Given R1 ≤ R2, define i : HR2 → HR1 by i(f) = f |B(0,R1) and i0 : H(C)→

HR1 by i0(f) = f |B(0,R1).

1. The maps i and i0 are continuous.

2. If M is dense in HR2 or H(C), then i(M) or i0(M) is dense in HR1.

Proof.
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1. Let (fn) ⊆ HR2 and f ∈ HR2 such that fn → f in HR2 be given. Then (fn) converges

to f uniformly on compact subsets of B(0, R2). In particular, (fn) converges to f

uniformly on compact subsets of B(0, R1). Thus, i(fn) → i(f) in HR1 which implies

that i is continuous. The proof for the continuity of i0 is similar.

2. Suppose that M is dense in HR2 . Then C[z] ⊆ M . Since i is continuous, this implies

that i(C[z]) ⊆ i(M). Finally, observe that since i(C[z]) = HR1 , we have that i(M) =

HR1 . The proof for the density of i0(M) is similar.

1.5 The Strong And Weak Operator Topology On C(H(G))

We will have occasion later to talk about the strong and weak operator topologies on C(H1),

the set of continuous linear operators which map H1 back into H1. Hence, we will need some

precise idea about the nature of these topologies. It is actually somewhat easier to develop

these notions more generally and then simply apply the results to the special case of C(H1).

The results and their proofs, except for Theorem 1.5, given in this section are known. In

fact some of the proofs will mimic those given in [3]. However, the references, such as [3],

for them tend to be terse. As such, a fuller exposition will be given here.

Let X be a locally convex, topological vector space (in the future we shall refer to such a

space as an LCS). By theorems 1.14, 1.36, and 1.37 in [15], there is some set P of seminorms

which induce the topology on X. That is, the topology on X is the weakest topology such

that p is continuous for all p ∈ P . By p. 100 - 101 of [3] we may assume that P is closed

under sums.

Denote by C(X) the set of continuous, linear operators mapping X into X. For each

x ∈ X, define qp,x : C(X) → R by qp,x(T ) = p(Tx). Note that qp,x is a seminorm on C(X)

and define the strong operator topology (SOT) on C(X) to be the toplogy with subbasis

{q−1
p,x(U) : p ∈ P , x ∈ X, U ⊆ R, U open}. That is, the SOT is the weakest topology such

that qp,x is continuous for all x ∈ X and p ∈ P . Next, for all f ∈ X∗ and x ∈ X, define qf,x :
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C(X)→ R by qf,x(T ) = |f(Tx)|. Once again, qf,x is a seminorm on C(X). Define the weak

operator toplogy (WOT) on C(X) to be the toplogy with subbasis {q−1
f,x(U) : f ∈ X∗, x ∈

X, U ⊆ R, Uopen}. That is, the WOT is the weakest topology such that qf,x is continuous

for all x ∈ X and f ∈ X∗. We give the basic properties of these topologies in the proposition

below. In order to do so, we introduce some notation. Write U(T0, x1, . . . , xm, p, r) = {T :

qp,xk
(T − T0) < r for 1 ≤ k ≤ m} and U(T0, x1, . . . , xm, f1, . . . fm, r) = {T : qfk,xk

(T − T0) <

r for 1 ≤ k ≤ m}.

Proposition 1.2 Let (Tα) ⊆ C(X) be a net and T ∈ C(X).

1. The collection

{U(T0, x1, . . . , xm, p, r) : m ≥ 1, p ∈ P , T0 ∈ C(X) and x1, . . . , xm ∈ X}

is a basis for the SOT and the collection

{U(T0, x1, . . . , xm, f1, . . . fm, r) : m ≥ 1, T0 ∈ C(X), x1, . . . , xm ∈ X and f1, . . . fm ∈ X∗}

is a basis for the WOT.

2. C(X) is a Hausdorff, LCS under both the SOT and the WOT.

3. Tα → T in C(X) under the SOT if and only if Tαx→ Tx for all x ∈ X.

4. Tα → T in C(X) under the WOT if and only if f(Tαx) → f(Tx) for all x ∈ X and

f ∈ X∗.

Proof.

1. Let an SOT neighborhood U of 0 and T0 be given. By definition of the SOT, there are

some open sets U1, . . . , Um ⊆ R, elements x1, . . . , xm ∈ X, and seminorms p1, . . . pm ∈

P such that 0 ∈ ∩mk=1 q
−1
pk,xk

(Uk) ⊆ U . Since Uk is an open set in R, it is a union of
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open intervals. Hence, for each k, there is some interval (ak, bk) such that (ak, bk) ⊆ Uk

and 0 ∈ q−1
pk,xk

((ak, bk)) where we allow that either ak = −∞ or bk = ∞. For the sake

of simplicity note that 0 ∈ q−1
pk,xk

((ak, bk)) if and only if 0 ∈ q−1
pk,xk

((−∞, bk)). Thus,

0 ∈ ∩mk=1 q
−1
pk,xk

((−∞, bk)) ⊆ U . Write r = min({bk : 1 ≤ k ≤ m}), p =
∑m

k=1 pk,

V0 = ∩mk=1 q
−1
p,xk

((−∞, r)), and note that 0 ∈ V0 ⊆ U and V0 = U(0, x1, . . . , xm, p, r).

Hence, the sets {U(0, x1, . . . , xm, p, r) : m ≥ 1, p ∈ P and x1, . . . , xm ∈ X} form a local

base for 0 and their translates by T0 form a local basis for T0. Finally, observe that

these translates are of the form prescribed in the theorem.

The result for the WOT topology follow similarly.

2. Observe that the local bases for 0 in the SOT and WOT given in part 1 are convex

sets since they are induced by seminorms. To see that the SOT is Hausdorff, note

that ∩x∈X,p∈P q−1
p,x({0}) = {T ∈ C(X) : qp,x(T ) = p(Tx) = 0, x ∈ X, p ∈ P} =

{0}. To see that the WOT is Hausdorff, note that by the Hahn-Banach theorem

∩x∈X,f∈X∗ q−1
f,x({0}) = {T ∈ C(X) : qf,x(T ) = |f(Tx)| = 0, x ∈ X, f ∈ X∗} = {0}.

3. Let a net (Tα) ⊆ C(X) be given and consider the SOT on C(X). By [11, Prop. 2.4.4,

p. 204], Tα → T if and only if p(Tαx) = qp,x(Tα)→ qp,x(T ) = p(Tx) for all x ∈ X and

p ∈ P . Hence, again by [11, Prop. 2.4.4, p. 204] and the definition of the topology on

X, we see that Tα → T if and only if Tαx→ Tx.

4. The proof of this is similar to the proof of part 3 of this result.

A few remarks are in order. First, parts 3 and 4 of the preceding proposition imply that

convergence in C(X) means pointwise convergence in some sense. Second, parts 3 and 4 of

the above result imply that the SOT is stronger than the WOT. Moreover, if X is a Banach

space, we know that the norm topology on C(X) is stronger than the SOT. In general, it is

not the case that these topologies coincide [3, Exercise 5, p. 276]. Third, in general it is the

case that the SOT, and hence the WOT, is not metrizable [3, Prop 1.3, p. 256].
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We shall now consider the closure of sets in the different topologies. To this end, we will

need a few definitions. For n ≥ 1, we shall define X(n) = X ⊕ . . .⊕X. That is, X(n) is the

direct sum of X with itself n−1 times. Given some T ∈ C(X), we define T (n) : X(n) → X(n)

by T (n)(x1, . . . , xn) = (Tx1, . . . , Txn). For T ∈ C(X) define Lat T = {M ⊆ X : T (M) ⊆

M, M = M}. For E ⊆ C(X), define Lat E = ∩T∈E Lat T , E(n) = {T (n) : T ∈ E}, and

Lat E(n) = ∩T∈E Lat T (n).

Proposition 1.3 Functionals On C(X).

1. Given some f ∈ (X(n))∗, there exists an f1, . . . fn ∈ X∗ such that f(x1, . . . , xn) =∑n
k=1 fk(xk).

2. L is continuous in the SOT if and only if L is continuous in the WOT.

Proof.

1. Define fk ∈ X∗ by fk(x) = f(0, . . . , 0, x, 0, . . . 0) where x is in the kth position. It is

clear that fk ∈ X∗ and that f(x1, . . . xn) =
∑n

k=1 fk(xk).

2. Since the SOT is stronger than the WOT, it is clear that if L is continuous in the WOT,

it is continuous in the SOT. To see the converse, suppose that L is continuous in the

SOT. Since the SOT is a LCS whose topology is given by seminorms, by [3, Thm. 3.1,

p. 108] there are seminorms q1, . . . , qk, and positive scalers c1, . . . , ck such that |L(T )| ≤∑k
j=1 cjqj(T ) for all T ∈ C(X). By definition, for 1 ≤ j ≤ k there is some pj ∈ P and

x ∈ X such that qj(T ) = pj(Txj) for all T ∈ C(X). Define M = {(Tx1, . . . , Txk) :

T ∈ C(X)} ⊆ X(k) and F : M → C by F (Tx1, . . . , Txk) = L(T ). Observe that

F is continuous since |F (Tx1, . . . , Txk)| = |L(T )| ≤
∑k

j=1 cjqj(T ) =
∑k

j=1 cjpj(Txj).

Hence, by the Hahn-Banach Theorem, there is some F0 ∈ (X(k))∗ such that F0|M = F .

By part 1, there exist f1, . . . , fk ∈ X∗ such that F0(y1, . . . yk) =
∑k

j=1 fk(yk) for all

(y1, . . . yk) ∈ X(k). In particular L(T ) = F (Tx1, . . . Txk) =
∑k

j=1 fk(Txk). Therefore,

L is continuous in the WOT.
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Corollary 1.1 If E ⊆ C(X) is convex, then E
SOT

= E
WOT

.

Proof. Since the dual of C(X) under the SOT coincides with the dual of C(X) under the

WOT, the weak closure of E under either topology is the same. Since E is convex, by [3,

Thm. 1.4, p. 126], the weak closure of E under either topology is the same as its closure.

We shall now establish an algebraic characterization of the the closure of a subalgebra of

C(X).

Lemma 1.3 If E ⊆ C(X) and T ∈ ESOT
, then for all n ≥ 1, Lat E(n) ⊆ Lat T (n).

Proof. Let T ∈ E, n ≥ 1, M ∈ LatE(n), and (x1, . . . , xn) ∈ M be given. Since T ∈ E,

there is some net (Tα) ⊆ E such that Tα → T . Hence, Tαxk → Txk for 1 ≤ k ≤ n. Thus,

T
(n)
α (x1, . . . , xn) = (Tαx1, . . . , Tαxn) → (Tx1, . . . , Txn) = T (n)(x1, . . . , xn). Also, since M ∈

Lat E(n) = ∩S∈ELat S(n), T
(n)
α (x1, . . . , xn) ∈M for all α. This implies that T (n)(x1, . . . xn) ∈

M since M is closed. That is T (n)(M) ⊆M . Hence, M ∈ Lat T (n) and the result is proven.

Proposition 1.4 If A ⊆ C(X) is a subalgebra containing the identity I, then ASOT
= {T ∈

C(X) : Lat A(n) ⊆ Lat T (n), n ≥ 1}.

Proof. Note that part of this containment was proven in the preceding statement. To see

the other containment, let T ∈ {S ∈ C(X) : LatA(n) ⊆ LatS(n)}. We must show that every

basic open set containing T contains an element of A. To this end, let x1, . . . , xm ∈ X,

p ∈ P , and r > 0 be given. Define M = {(Ax1, . . . , Axm) : A ∈ A}. Since A is an algebra,

M ∈ LatA(m) ⊆ LatT (m). Also, the fact that 1 ∈ A implies that (x1, . . . , xm) ∈ M .

Hence, (Tx1, . . . , Txm) ∈ M . Since the set {(Ax1, . . . , Axm) : A ∈ A} is dense in M

and (Tx1, . . . , Txm) ∈ M , there is some net (Aα) ⊂ A such that (Aαx1, . . . , Aαxm) →

(Tx1, . . . , Txm). Thus, Aαxj → Txj for 1 ≤ j ≤ m. Hence, there is some α such that
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p(Aαxj − Txj) = qp,xj
(Aα − T ) < r. Therefore, Aα ∈ U(T, x1, . . . , xm, p, r) which implies

that T ∈ A.

We now apply the above general construction to the space X = H(G) where G ⊆ C is a

region, pn(f) = max
({
|f(z)| : |z| ≤ n and d(z,C−G) ≥ 1

n

})
, d(z,C − G) = inf({|z − w| :

w ∈ C − G}), and P = {pn : n ≥ 1} (for example see [4] p. 143). As a first application of

this construction, we will given a natural extension of Theorem 1.4.

Theorem 1.5 Let G be a simply connected region such that G 6= C and consider C(H(G))

and C(H1) under the SOT. Then C(H(G)) and C(H1) are isomorphic.

Proof. By Theorem 1.4, there is some T0 : H(G)→ H1 such that T0 is a linear homeomor-

phism. Define A : C(H(G))→ C(H1) by AT = T0TT
−1
0 . Given c ∈ C and S, T ∈ C(H(G)),

A(cT +S) = T0(cT +S)T−1
0 = (cT0T +T0S)T−1

0 = cT0TT
−1
0 +T0ST

−1
0 = cAT +AS. Hence,

A is linear. Let (Ti) ⊆ C(H(G)) be a net such that Ti → T and f ∈ H(G) be given. By

definition of the SOT and the continuity of T0, we have that Ti(T
−1
0 f) → T (T−1

0 f) and

ATi = T0(TiT
−1
0 f) → T0(TT

−1
0 f) = AT . Thus, A is continuous. Since T0 is invertible, A is

injective. Given some S ∈ C(H1), observe that T−1
0 ST0 ∈ C(H(G)) and A(T−1

0 ST0) = S.

Hence, A is surjective. Finally, note that A−1 : C(H1) → C(H(G)) defined by T−1
0 TT0 is

continuous by a proof similar to the one showing the continuity of A. Therefore, A is a

homeomorphism.
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CHAPTER 2

Diagonal Operators

In this chapter, we define the diagonal operators. These are the main objects of study in

this dissertation. In the first section, we record the basic properties of such operators. In

particular, we will characterize the growth rate of the eigenvalues in terms of the domain and

range of the operator. In the second section, we will observe that such operators give rise

to a natural way of embedding H(G) into C(H(G)) under the SOT when G 6= C is simply

connected.

2.1 Definition And Basic Properties

Definition 2.1 Let R1, R2 ∈ (0,∞] be given. A continuous linear map D : HR1 → HR2

whose eigenvectors contains the set {zn : n ≥ 0} is called a diagonal operator. If Dzn =

λnz
n, then (λn) is called D’s associated sequence.

To see why these operators are called diagonal, let D : HR1 → HR2 be a diagonal

operator with associated sequence (λn). Given some f ∈ HR1 such that f(z) =
∑∞

n=0 fnz
n,

the continuity of D implies that (Df)(z) = D
∑∞

n=0 fnz
n =

∑∞
n=0 fnDz

n =
∑∞

n=0 λnfnz
n.

Hence, if we regard f as a column vector consisting of the coefficients of its expansion, then

D can be regarded as an infinite by infinite diagonal matrix:
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Df =



λ0 0 0 0 . . .

0 λ1 0 0 . . .

0 0 λ2 0 . . .

0 0 0 λ3 . . .

...
...

...
...

. . .





f0

f1

f2

f3

...


=



λ0f0

λ1f1

λ2f2

λ3f3

...


=
∞∑
n=0

λnfnz
n.

Observe that Chapter 1 contains an example of a diagonal operator. To see this, let

R ∈ (0,∞) be given and observe that the function f : B(0, R)→ B(0, 1) defined by f(z) = z
R

is a homeomorphism. By Theorem 1.4, the map T : HR → H1 defined by Tg = g ◦ f−1 is a

homeomorphism. Further, observe that if g(z) =
∑∞

n=0 gnz
n, then (Tg)(z) = (g ◦ f−1)(z) =

g(Rz) =
∑∞

n=0R
ngnz

n. That is, the operator T is a diagonal operator with associated

sequence (Rn).

We now collect some basic results concerning diagonal operators. In particular, if D :

HR1 → HR2 is a diagonal operator with associated sequence (λn), we shall see how R1, R2,

and the sequence (λn) are related. In particular, we characterize the collection of associ-

ated sequence of diagonal operators. We start with a technical lemma that gives a certain

finiteness condition on associated sequences.

Lemma 2.1 Let R ∈ (0,∞] and a sequence (λn) ⊆ C such that lim supn→∞ |λn|
1
n = ∞ be

given. Then there is some f ∈ HR such that f(z) =
∑∞

n=0 fnz
n and

∑∞
n=0 λnfnz

n diverges

for all z > 0.

Proof. Since lim supn→∞ |λn|
1
n =∞, there is some subsequence (λnk

) such that limk→∞ |λnk
|

1
nk =

∞ and |λnk
| > 0 for all k. Define the sequence (fn) by fnk

=
|λnk

|
λnk
·|λnk
|− 1

2 and fn = 0 if n 6= nk

for all k. Note that lim supn→∞ |fn|
1
n = lim supk→∞ |fnk

|
1

nk = lim supk→∞
1

(|λnk
|

1
nk )

1
2

= 0 and

define f ∈ HR by f(z) =
∑∞

n=0 fnz
n. Let z > 0 be given and note that

∞∑
n=0

fnλnz
n =

∞∑
k=0

(
|λnk
|

1
nk

(|λnk
|

1
nk )

1
2

z

)nk

=
∞∑
k=0

((|λnk
|

1
nk )

1
2 z)nk =∞.



18

The preceding lemma shows that if the formal map
∑∞

n=0 fnz
n →

∑∞
n=0 λnfnz

n is to

even be defined, much less continuous, then it must be the case that lim supn→∞ |λn|
1
n <∞.

We may now proceed to the basic properties of diagonal operators. In particular, we show

that the set of eigenvalues of such an operator is necessarily {λn : n ≥ 0} where (λn) is its

associated sequence.

Proposition 2.1 Let D : HR1 → HR2 be a diagonal operator with associated sequence (λn).

Then

1. the set of eigenvalues of D is {λn : n ≥ 0},

2. the set of eigenvectors for λn is the set span({zk : λk = λn}),

3. if R1 < R2 =∞, then lim supn→∞ |λn|
1
n = 0, and

4. if R1 <∞ and R2 <∞, then lim supn→∞ |λn|
1
n ≤ R1

R2
.

Proof.

1. Suppose that for some f ∈ HR1 there is some λ ∈ C such that Df = λf and f 6= 0.

Write f(z) =
∑∞

n=0 fnz
n and observe that 0 = λf(z)− (Df)(z) =

∑∞
n=0(λ− λn)fnz

n.

Then (λ − λn)fn = 0 for all n ≥ 0 and there is some n such that fn 6= 0 since f 6= 0.

Thus, λ = λn for some n. Conversely, if f(z) = zn, then (Df)(z) = λnz
n = λnf(z).

Hence, {λn : n ≥ 0} is the set of eigenvalues of D.

2. Suppose that for some f ∈ HR1 such that f(z) =
∑∞

n=0 fnz
k, Df = λnf . Then

0 = λnf(z)−(Df)(z) =
∑∞

k=0(λn−λk)fkzk. Since (λn−λk)fk = 0 for all k ≥ 0, λk = λn

for all k such that fk 6= 0. That is, f(z) =
∑

k,λk=λn
fkz

k ∈ span({zk : λk = λn}).

Conversely, if f ∈ HR1 ∩ span({zk : λk = λn}) then f(z) =
∑

k,λk=λn
fkz

k. Hence,

λnf(z) =
∑

k,λk=λn
λnfkz

k =
∑

k,λk=λn
λkfkz

k = (Df)(z).
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3. Suppose R1 <∞ = R2 and define the function f ∈ HR1 by f(z) =
∑∞

n=0
1
Rn

1
zn. Since

Df ∈ H(C), we have that 0 = lim supn→∞

∣∣∣ 1
Rn

1
λn

∣∣∣ 1
n

= 1
R1

lim supn→∞ |λn|
1
n . Hence,

lim supn→∞ |λn|
1
n = 0.

4. Suppose R1, R2 < ∞ and define the function f ∈ HR1 by f(z) =
∑∞

n=0
1
Rn

1
zn. Since

Df ∈ HR2 , we have that 1
R2
≥ lim supn→∞

∣∣∣ 1
Rn

1
λn

∣∣∣ 1
n

= 1
R1

lim supn→∞ |λn|
1
n . Hence,

lim supn→∞ |λn|
1
n ≤ R1

R2
.

The preceding proposition demonstrates that the associated sequence of a diagonal op-

erator has a growth condition which is specified in terms of its domain and codomain. The

following result is a sort of converse to this. Namely, if a sequence (λn) ∈ C is such that

lim supn→∞ |λn|
1
n <∞, then there exists a diagonal operator with associated sequence (λn).

Proposition 2.2 Let R1 ∈ (0,∞] and a sequence (λn) ⊆ C such that R ≡ lim supn→∞ |λn|
1
n <

∞ be given. Choose R2 ∈
(
0, R1

R

]
(where we interpret R1

R
=∞ when R = 0). Then the map

D : HR1 → HR2 defined by Df = g, where f(z) =
∑∞

n=0 fnz
n and g(z) =

∑∞
n=0 λnfnz

n, is a

diagonal operator.

Proof. We first show that such an operator is well-defined. First suppose that R1 <∞ and

let f ∈ HR1 such that f(z) =
∑∞

n=0 fnz
n be given. Then

lim sup
n→∞

|λnfn|
1
n ≤ (lim sup

n→∞
|λn|

1
n )(lim sup

n→∞
|fn|

1
n ) ≤ R

R1

≤ 1

R2

where we take 1
R2

= 0 if R2 = ∞. Hence, Df = g ∈ HR2 where g(z) =
∑∞

n=0 λnfnz
n. The

proof when R1 =∞ follows similarly.

Since it is clear that D is linear and has the monomials {zn : n ≥ 0} as eigenvectors, we

need only prove the continuity of D. To this end, for each n ≥ 1 let fn, f ∈ HR1 and g ∈ HR2

such that fn → f and Dfn → g as n → ∞ be given. Write fn(z) =
∑∞

k=0 an,kz
k, f(z) =∑∞

k akz
k, and g(z) =

∑∞
k=0 gkz

k. By Lemma 1.1, we have that limn→∞ an,k = ak and
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λkak = limn→∞ λkan,k = gk. Thus, g(z) =
∑∞

k=0 gkz
k =

∑∞
k=0 λkakz

k = (Df)(z). Thus,

Df = g and D is continuous by the Closed Graph Theorem.

A consequence of the preceding propositions is that the eigenvalues of a diagonal operator

may be unbounded. For instance, if λn = 4n for n ≥ 0, then lim supn→∞ |λn|
1
n = 4. Hence,

the diagonal operator D : H(C) → H(C) with associated sequence (λn) has unbounded

eigenvalues. This is in contrast to the spectral theory of operators on Banach spaces since

such operators have compact spectrums.

We also note that above results indicate that it is possible to have different operators

D : HR1 → HR2 and D′ : HR3 → HR4 with the same associated sequence (λn). The action of

such operators is formally the same but defined on different spaces. We will make use of this

observation in subsequent chapters. Since we will be interested in the cyclicity of vectors, we

now give a simple result concerning orbits of vectors and intertwining operators. For ease of

notation, for f ∈ HR and D a diagonal operator, write span(orbD(f)) = span({Dnf : n ≥

0}).

Proposition 2.3 Given R1, R2 such that 0 < R1, R2 ≤ ∞, let D : HR1 → HR1, D′ : HR1 →

HR2, and D : HR2 → HR2 be diagonal operators with associated sequences (λn), (λ′n), and

(λn), respectively.

1. If p ∈ C[z], then D′p(D) = p(D)D′. In particular, D′D = DD′.

2. If f ∈ HR1, then D′(span(orbD(f))) = span(orbD(D′f)).

Proof.

1. Let f ∈ HR1 such that f(z) =
∑∞

n=0 fnz
n be given. Then

(D′Df)(z) =
∞∑
n=0

λ′nλnfnz
n =

∞∑
n=0

λnλ
′
nfnz

n = (DD′f)(z).
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Hence, D′D = DD′. Let p(z) ∈ C[z] where p(z) =
∑n

k=0 ckz
k be given. Then

D′(p(D)) = D′

(
n∑
k=0

ckD
k

)
=

n∑
k=0

ckD
′Dk =

n∑
k=0

ckD
∗kD′

=

(
n∑
k=0

ckD
∗k

)
D′ = (p(D))D′.

2. Note that if x ∈ span(orbD(f)), then there is some n ≥ 0 and a0, . . . , an such that

x =
∑n

k=0 akD
kf = p(D)f where p(z) =

∑n
k=0 akz

k. Hence, by the first part of this

proposition, we have that

D′(span(orbD(f))) = D′({p(D)f : p(z) ∈ C[z]}) = {D′p(D)f : p(z) ∈ C[z]}

= {p(D)D′f : p(z) ∈ C[z]} = span(orbD(D′f)).

2.2 A Natural Embedding Of H1 Into C(H1)

In this section, we use diagonal operators to embed H1 into C(H1) in the SOT. To motivate

this, observe that if D : H1 → H1 is a diagonal operator with associated sequence (λn),

then lim supn→∞ |λn|
1
n ≤ 1 by Proposition 2.1. Hence, f ∈ H1 where f(z) =

∑∞
n=0 λnz

n.

Conversely, given some f ∈ H1 where f(z) =
∑∞

n=0 fnz
n, the Radius of Convergence Formula

implies that lim supn→∞ |fn|
1
n ≤ 1. Thus, there is some diagonal operator D : H1 → H1 with

associated sequence (fn). In light of this, it seems that there is little distinction between

functions and diagonal operators acting on those functions. We make the following definition.

Definition 2.2 Given R such that 0 < R ≤ ∞ and f ∈ HR such that f(z) =
∑∞

n=0 fnz
n,

define R′ = lim supn→∞ |fn|
1
n and choose R1 ∈ (0,∞] and R2 ∈

(
0, R1

R′

]
(where R1

R′
= ∞ if

R′ = 0). Define Df : HR1 → HR2 to be the diagonal operator which has associated sequence

(fn).
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For the rest of this document, let u ∈ H1 be defined by u(z) = 1
1−z =

∑∞
n=0 z

n. A simple

computation shows that if g ∈ H1, then g = Dgu. This computation is a crucial observation

and makes the idea that there is little distinction between diagonal operators and analytic

functions more precise. As a first application of this idea, we will show that H1 can be

naturally embedded in C(H1).

Proposition 2.4 Let D ⊆ C(H1) denote the set of diagonal operators on H1. For each

k ≥ 0 define πk : H1 → H1 by (πkf)(z) = fkz
k where f(z) =

∑∞
n=0 fnz

n.

1. The subspace D is SOT closed.

2. The map f → Df is a linear homeomorphism.

3. The set {πn : n ≥ 0} has a dense linear span in D.

Proof.

1. This follows from condition 3 of Proposition 1.2 and Lemma 1.1 by choosing x = f

where f(z) = zk.

2. It is clear that the map f → Df is linear. To see that it is continuous, for n ≥ 1, let

fn, f ∈ H1 such that fn → f be given. Let h ∈ H1 such that h(z) =
∑∞

n=0 hnz
n be

given. Then

Dfnh = DfnDhu = DhDfnu = Dhfn → Dhf = DhDfu = DfDhu = Dfh.

Thus, Dfn → Df in the SOT.

To see that the inverse is continuous, let (Dα) ⊆ C(H1) and D ∈ C(H1) such that

(Dα) is a net of diagonal operators having associated sequences (λα,k) and Dα → D

be given. By part 1 of this result, D is a diagonal operator with associated sequence

(λk = limα λα,k). Define fα(z) =
∑∞

k=0 λα,kz
k and f(z) =

∑∞
k=0 λkz

k. Then Dαg → Dg
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for all g ∈ H1. In particular, the preceding statement is true for u. Thus, fα = Dαu→

Du = f .

3. This follows from part 2 of this result, the fact that span({zk : k ≥ 0}) = H1, and the

observation that zk → πk.

Note that the above result combined with Theorem 1.5 implies that there is a natural

way to embed H(G) into C(H(G)) in the SOT where G is a simply connected region and

G 6= C. Moreover, the embedding of H(G) in C(H(G)) is closed. Finally, observe that

the above shows that diagonal operators have a canonical quality to them. In a sense, any

function analytic on a simply-connected region which is not C is a diagonal operator.
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CHAPTER 3

Cyclic Diagonal Operators

In this chapter, we consider the cyclic diagonal operators. In the first section, we give

necessary and sufficient conditions for a diagonal operators to be cyclic. In the second

section, we examine a connection between cyclic vectors for one operator and cyclic vectors

for a related operator on a different space. Loosely speaking, we also show that the faster a

vector’s coefficients decay, the better chance it has of being cyclic. In the third section, we

discuss the existence of common cyclic vectors.

3.1 Definition Of And Criteria For Cyclicity

Recall from Section 1.1 that a vector x in a complete metrizable topological vector space

X is said to be cyclic for a continuous linear operator T : X → X on X if the closed

linear span of the orbit {T nx : n ≥ 0} of x under T is all of X. If x is not cyclic, then

span(orbT (x)) is an example of a non-trivial, closed, invariant subspace for T . Since we are

concerned with diagonal operators and their closed, invariant subspaces, it would be useful to

have a characterization of which operators are cyclic. The characterization of which diagonal

operators are cyclic is precisely the same as it is in the Hilbert space case (see [9, Cor. 6]).

This is the content of the next theorem. Before we state the theorem, recall that a set is

residual if it is the complement of a set of first category.
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Theorem 3.1 Let D : HR → HR and R ∈ (0,∞) be a diagonal operator with associated

sequence (λn).

1. If f ∈ HR is cyclic for D and f(z) =
∑∞

n=0 fnz
n, then fn 6= 0 for all n ≥ 0.

2. The operator D is cyclic if and only if λn 6= λm when n 6= m.

3. If D is cyclic, then the set of cyclic vectors is residual in HR.

Proof.

1. Suppose that f ∈ HR such that f(z) =
∑∞

n=0 fnz
n and there is some n0 such that

fn0 = 0. Define L : HR → C by Lg =
∑∞

n=0 `ngn where g(z) =
∑∞

n=0 gnz
n, `n = 0 for

n 6= n0, and `n0 = 1. By Theorem 1.3, L ∈ H∗R. Also, L(span(orbD(f))) = {0} for

k ≥ 0 by construction. Since L is a non-trivial functional, span(orbD(f)) can not be

dense by the Hahn-Banach theorem.

2. Suppose there is some pair m,n ≥ 0 such that λn = λm and m 6= n. Choose f ∈ HR

such that f(z) =
∑∞

k=0 fkz
k and fk 6= 0 for k ≥ 0. Define L : HR → C by Lg =∑∞

k=0 `kgk where g(z) =
∑∞

k=0 gkz
k, `k = 0 for k /∈ {m,n}, `m = 1, and `n = −fm

fn
. By

Theorem 1.3, L ∈ H∗R. Also, L is non-trivial and L(span(orbD(f))) = {0} for j ≥ 0 by

construction. Thus, span(orbD(f)) can not be dense. By part 1 of this theorem, this

implies that D is not cyclic.

Now suppose that D has distinct eigenvalues and define D′ : H(C)→ H(C) to be the

diagonal operator with associated sequence (λn). By Proposition 2.1, D′ is continuous.

Marin and Seubert [10] proved that D′ is cyclic. Hence, there is some f ∈ H(C) such

that for each k ≥ 0, there is some sequence of polynomials (pn) ⊆ C[z] such that

pn(D′)f → zk in H(C). Define i : H(C)→ HR by i(f) = f |B(0,R). Thus, by propostion

1.1, pn(D)i(f)→ zk in HR. Since zk ∈ span(orbD(i(f))) for k ≥ 0, it is the case that

HR = span(orbD(i(f))). Therefore, D is cyclic and i(f) is a cyclic vector.
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3. Suppose that D is cyclic. Define D′ : H(C)→ H(C) to be the diagonal operator with

associated sequence (λn) and i : H(C) → HR by i(f) = f |B(0,R). By Proposition 2.2,

D′ is continuous. Marin and Seubert [10] proved that D′ has a dense set of cylic vectors

C. From the proof of the previous part of this theorem, every element of i(C) is cyclic

for D. Moreover, since C is dense in H(C), by Proposition 1.1, i(C) is dense in HR.

Write O = {p(D) : p ∈ C[z]}. Since {Tf : T ∈ O} = HR for each f ∈ i(C) and i(C) is

dense in HR, it follows from Theorem 1 in [6] that the set of cyclic vectors is residual.

The above result was proven by Deters and Seubert [5] in 2007 and by Bernal-González,

Calderón-Moreno∗, and Prado-Bassas [1] in 2006. However, the above proof is different from

both of these. Bernal-González et. al. also observe in their paper that no diagonal operator

is supercyclic or hypercyclic. They also note that any vector space of cyclic vectors, excluding

the zero vector, necessarily has dimension one.

3.2 Cyclicity Of Vectors In Terms Of Coefficient Decay

Rates

As noted after Propostion 2.2, it is possible to have two diagonal operators D : HR1 → HR2

and D′ : HR3 → HR4 with the same associated sequence. The following two results examine

how the cyclic vectors of each operator are related to the other. To aid in this, we now define

the operator which appeared as an example at the beginning of Chapter 2. It is the natural

homeomorphism between HR and H1 when R ∈ (0,∞).

Definition 3.1 Given 0 < R <∞, define DR : HR → H1 where DR has associated sequence

(Rn).

Proposition 3.1 Given R1, R2 such that 0 < R1, R2 ≤ ∞, let D : HR1 → HR1, D′ : HR1 →

HR2, and D : HR2 → HR2 be diagonal operators with associated sequences (λn), (λ′n), and
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(λn) respectively. Suppose also that λ′n 6= 0 for all n ≥ 0. If f is a cyclic vector for D, then

D′f is a cyclic vector for D.

Proof. Let k ≥ 0 be given. Since f is cyclic for D, there is some sequence (pn) ∈ C[z]

such that pn(D)f → zk as n → ∞. By Proposition 2.3, we have that D′(span(orbD(f))) =

span(orbD(D′f)). Hence, D′(pn(D)f) ∈ span(orbD(D′f)) andD′(pn(D)f)→ D′zk = λ′kz
k ∈

span(orbD(D′f)) as n→∞. Since λ′k 6= 0, we have that zk ∈ span(orbD(D′f)). Since k was

arbitrary and the monomials have a dense linear span in HR2 , span(orbD(D′f)) is dense in

HR2 . That is D′f is cyclic for D.

Theorem 3.2 Given R such that 0 < R < ∞, let D : HR → HR and D′ : H1 → H1 be

diagonal operators with associated sequence (λn). Then f is cyclic for D if and only if DRf

is cyclic for D′.

Proof. Let f ∈ HR such that f(z) =
∑∞

n=0 fnz
n be given. Let D : H1 → HR be the diagonal

operator with associated sequence
(

1
Rn

)
. If f is cyclic for D, then DRf is cyclic for D′ by

the Proposition 3.1. Similarly, if DRf is cyclic for D′, then f = DDRf is cyclic for D by the

Proposition 3.1.

We have already observed that if lim supn→∞ |λn|
1
n ≤ 1, then a diagonal operator with

associated sequence (λn) can be defined on HR where 0 < R < ∞. The above result

combined with the fact that DR is a homeomorphism essentially says that with respect to

which vectors are cyclic, we need only direct our attention at H1. Hence, the only interesting

spaces in which to study cyclicity are H1 and H(C).

Given a cyclic operator D, we know that D has a residual set of cyclic vectors. However,

it is not clear which vectors are cyclic. The following set of results show that we need not

investigate each vector seperately for cyclicity. Rather, once we are able to establish the

cyclicity of a particular vector, we are then able to conclude that a whole class of related

vectors is cyclic. These results are cast in terms of the decay rates of the coefficients of the

vectors.
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Theorem 3.3 Given R such that 0 < R ≤ ∞, let D : HR → HR be a diagonal operator

with associated sequence (λn). Suppose that f ∈ HR such that f(z) =
∑∞

n=0 fnz
n is cyclic

for D and let g ∈ HR such that g(z) =
∑∞

n=0 gnz
n and gn 6= 0 for all n ≥ 0 be given. If

lim supn→∞

(
|gn|
|fn|

) 1
n ≤ 1, then g is cyclic for D.

Proof. Note that since f is cyclic for D, we have that fn 6= 0 for all n ≥ 0. Since

lim supn→∞

(
|gn|
|fn|

) 1
n ≤ 1 we may define D′ : HR → HR to be the diagonal operator which

has ( gn

fn
) as its associated sequence. Then D′f = g and g is cyclic by Proposition 3.1.

The content of the following corollary is that the cyclicity of vectors is related to the

decay rate of the coefficients of the given vector. In particular, once a particular decay rate

yields a cyclic vector, then all decay rates less than it also yield a cyclic vector.

Corollary 3.1 Given R such that 0 < R ≤ ∞, let D : HR → HR be a diagonal operator

with associated sequence (λn). Let f ∈ HR such that f(z) =
∑∞

n=0 fnz
n.

1. If f is cyclic for D and g ∈ HR such that g(z) =
∑∞

n=0 gnz
n and 0 < |gn| ≤ |fn| for all

n ≥ 0, then g is cyclic for D.

2. f is cyclic for D if and only if g is cyclic for D where g(z) =
∑∞

n=0 |fn|zn.

Proposition 3.2 Suppose that D is a diagonal operator on H1 with associated sequence

(λn), f, g ∈ H1 such that f(z) =
∑∞

n=0 fnz
n, g(z) =

∑∞
n=0 gnz

n and gn 6= 0 for n ≥ 0,

0 < lim infn→∞ |fn|
1
n = R, and lim supn→∞ |gn|

1
n = R′. Let R0 ∈

(
0,min

(
{1, R

R′
}
)]

(where

we interpret R
R′

=∞ in case R′ = 0) and let D′ : HR0 → HR0 be the diagonal operator with

associated sequence (λn). If f is cyclic for D, then g|B(0,R0) is cyclic for D′.

Proof. Observe that lim supn→∞

(
|gn|
|fn|

) 1
n ≤ lim supn→∞ |gn|

1
n

lim infn→∞ |fn|
1
n

= R′

R
. Define D : H1 → HR0 to

be the diagonal operator with associated sequence
(
gn

fn

)
and note that D0f = g|B(0,R0). By

Proposition 3.1, since f is cyclic for D, g|B(0,R0) is cyclic for D′.

The next theorem is important because it establishes two important facts about cyclic

vectors. The first is that sometimes it suffices to check the cyclicity of one vector to determine
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the cyclicity of all possible cyclic vectors. The second fact is that every cyclic operator has a

decay rate associated with it. If the coefficients of some vector decay slower than this decay

rate, then they are not cyclic.

Theorem 3.4 Suppose that D is a diagonal operator on H1 and g ∈ H1 such that g(z) =∑∞
n=0 gnz

n, gn 6= 0 for n ≥ 0, and R ≡ lim supn→∞ |gn|
1
n .

1. Suppose that f ∈ H1 such that f(z) =
∑∞

n=0 fnz
n, fn 6= 0 for n ≥ 0, and we have that

lim inf |fn|
1
n = 1. If f is cyclic, then g is cyclic.

2. Suppose that fn ∈ H1 such that fn(z) =
∑∞

k=0 fn,kz
n, fn,k 6= 0 for n, k ≥ 0, 0 <

lim inf |fn,k|
1
k = Rn, and limn→∞Rn = R. If fk is cyclic for all k, then g is cyclic.

Proof.

1. This follows immediately from the preceding proposition.

2. Define R′n = min
({

1, Rn

R

})
and a sequence of diagonal operators (Dn) such that Dn :

HR′n → HR′n and each Dn has the same associated sequence as D. Define in : H1 → HR′n

by in(h) = h|B(0,R′n). Then from Proposition 3.2, in(g) is a cyclic vector for Dn for

all n ≥ 0. That is, span(orbDn(in(g))) is dense in HR′n for all n ≥ 0. Note that

since Dn and D have the same associated sequence for n ≥ 0, span(orbDn(in(g))) =

in(span(orbD(g))). Write M = span(orbD(g)). To see that M is dense in H1, let

L ∈ H∗1 be given such that L(M) = {0}. Then by Theorem 1.3, there is some sequence

(`k) such that lim supk→∞ |`k|
1
k < 1 and if f ∈ H1 where f(z) =

∑∞
n=0 fkz

k, then Lf =∑∞
k=0 fk`k. Since lim supk→∞ |`|

1
k < 1, there is some n such that lim supk→∞ |`|

1
k < R′n.

Define L′ ∈ H∗R′n by L′f =
∑∞

k=0 fk`k for f ∈ HR′n where f(z) =
∑∞

k=0 fkz
k. Since, by

Proposition 1.1, in(M) is dense in HR′n and L′(in(M)) = L(M) = {0}, we have that

L′ = 0 by the Hahn-Banach Theorem. Thus, `k = 0 for all k. Hence, L = 0 and M is

dense in H1. That is, g is cyclic for D.



30

Proposition 3.3 Write E = {f ∈ H1 : f(z) =
∑∞

n=0 fnz
n and lim supn→∞ |fn|

1
n = 1}.

The set E is residual in H1.

Proof. For n ≥ 1, define in : H1+ 1
n
→ H1 by in(h) = h|B(0,1) and En = hn

(
H1+ 1

n

)
. Observe

that E ∩ En = ∅ for n ≥ 1, H1 = E ∪ (∪∞n=1En), and En is of first category in H1 by the

Open Mapping Theorem. Therefore, E is residual in H1.

To make the preceding result more concrete, for each R ∈ (0, 1], define fR ∈ H1 by

fR(z) =
∑∞

n=0R
nzn = 1

1−Rz and let D : H1 → H1 be a cyclic diagonal operator. By

Theorem 3.1, a necessary condition for g ∈ H1 to be cyclic is that it must have non-zero

coefficients. There are two possibilities. Either f1 is cyclic or it is not. If it is, then by part

1 of Theorem 3.4, g is cyclic. That is, the converse of part 1 of Theorem 3.1 holds for D.

Now suppose that f1 is not cyclic, but fR′ is cyclic for some R′ ∈ (0, 1). Then by part 2

of Theorem 3.4 if R ≤ R′ or R > R′, then fR is cyclic or fR is not cyclic, respectively.

3.3 Common Cyclic Vectors For Families Of Diagonal

Operators

We say that a vector x in a complete metrizable topological vector space X is a common

cyclic vector for a set T of cyclic operators on X if x is a cyclic vector for each operator T

in T . Herrero has shown that a cyclic operator on a Banach space has a dense set of cyclic

vectors if and only if the point spectrum of its adjoint has empty interior (see [7, Thm. 1, p.

918]). Moreover, Shields has shown that the set of cyclic vectors of an operator on a Banach

space is a Gδ set (see [19, Prop. 40, p. 411]). Hence by the Baire Category Theorem any

countable collection of cyclic operators on a Banach space the point spectra of all of whose

adjoints have empty interior has a dense set of common cyclic vectors.

In this section, we show that the uncountable collection of cyclic diagonal operators on

HR each of whose eigenvalues are separated (in a sense made precise below) has a dense
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set of common cyclic vectors. Hence, even though HR is not a Banach space, a conclusion,

similar to the one in the Banach space setting, may be reached.

Theorem 3.5 Let D0 denote the collection of cyclic diagonal operators on HR each of whose

set of eigenvalues {λn : n ≥ 0} is such that inf {|λi − λj| : i 6= j} > 0. Then D0 has a residual

set of common cyclic vectors.

Proof. For eachD ∈ D0, defineD : H(C)→ H(C) to be the diagonal operator with the same

associated sequence as D. Define D = {D : D ∈ D0}. By Theorem 10 in [10], D has a dense

set C of common cylic vectors. Define i : H(C) → HR by i(f) = f |B(0,R). By Proposition

1.1, i is continuous and i(C) is dense in HR. By the proof of part 2 of Theorem 3.1, for all

f ∈ i(C) and D ∈ D0, f is a cyclic vector for D. Write O = {p(D) : p ∈ C[z], D ∈ D0}. Since

{Tf : T ∈ O} = HR for each f ∈ i(C) and i(C) is dense in HR, it follows from Theorem 1 in

[6] that the set of common cyclic vectors is residual.

It is not known if the set of all cyclic diagonal operators on HR has a common cyclic

vector.
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CHAPTER 4

Synthetic Diagonal Operators

In this chapter we investigate the closed invariant subspaces of cyclic diagonal operators. This

leads naturally to determining which operators are synthetic. The definition of a synthetic

operator as well as equivalent conditions for synthesis are given in section one. Of particular

interest will be the fact that synthetic diagonal operators satisfy the converse of part 1

of Theorem 3.1. Part 1 of Theorem 3.1 states that in order for a vector to be cyclic, it

must have all non-zero coefficients. It is shown in Theorem 4.1 that if a diagonal operator

is synthetic, then a vector having all non-zero coefficients is also a sufficient condition for

cyclicity. It is also shown that an operator being synthetic makes connections between the

linear independence of an exponential series related to the operator, closure of the algebra

generated by the operator in the SOT, and the existence of sequences of polynomials which

have a very delicate growth condition at the eigenvalues of the operator. In the second

section, we will give examples of synthetic diagonal operators. Throughout this chapter,

recall that the function u ∈ H1 is defined by u(z) = 1
1−z =

∑∞
n=0 z

n. Also, for each k ≥ 0,

πk ∈ C(H1) is defined by (πkf)(z) = fkz
k where f(z) =

∑∞
n=0 fnz

n.
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4.1 Definition Of And Equivalences For Synthesis

Now that we know which operators are cyclic, we may now proceed to finding the closed,

invariant of such operators. To this end, recall that a continuous linear operator T : X → X

on a complete metrizable topological vector space X is said to admit spectral synthesis if

every closed invariant subspace M for T equals the closed linear span of the eigenvectors for T

contained in M. Operators which admit spectral synthesis are called synthetic. By definition,

a diagonal operator onHR having associated sequence (λn) has as eigenvectors the monomials

zn. If D is cyclic, then the eigenvalues are distinct and scaler multiples of the monomials

are the only eigenvectors for D (see Theorem 3.1). Hence a cyclic diagonal operator on HR

admits spectral synthesis if and only if the lattice of closed invariant subspaces of D consists

precisely of the closed linear span of sets {zn : n ∈ N} of monomials where N is an arbitrary

subset of nonnegative integers.

Theorems 4.1 and 4.3 of this section gives various equivalent conditions for a cyclic

diagonal operator on HR to admit spectral synthesis where 0 < R <∞. While Theorem 4.1

is very much an analogue of Proposition 5 in [10], Theorem 4.3 demonstrates that there are

big differences between diagonal operators on H(C) and diagonal operators on H1.

We begin with two technical lemmas.

Lemma 4.1 Let M be any closed subspace of HR other than the whole space HR or {0} and

define K to be the set of nonnegative integers k for which there exists an f ∈ M such that

f(z) =
∑∞

n=0 fnz
n in with fk 6= 0. Then there exists a g ∈ M such that g(z) =

∑∞
n=0 gnz

n

with gk 6= 0 for all k in K.

Proof. By means of contradiction, suppose that no such function in M exists. Then M =

∪k∈KMk where Mk ≡ {h(z) ≡
∑∞

r=0 arz
r ∈M : ak = 0}. Observe that Mk = M ∩ π−1

k ({0}),

which implies that Mk is closed in M . Define ik : Mk →M by ik(f) = f . Since M is closed

in HR, it is complete, and hence of second category in M. If ik(Mk) was of second category

in M , then by the Open Mapping Theorem Mk = i(Mk) = M . This is not the case by the
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definition of K. Thus, Mk is of first category in M for all k ∈ K. Hence, ∪k∈KMk = M is

of first category in M which contradicts the Baire Category Theorem.

Lemma 4.2 Suppose that
(
|an|
n

)
is not bounded, then for all r, there is some sequence (bn)

which depends on R such that lim sup |bn|
1
n = 0 and

∑∞
n=0 bne

anz does not converge in HR.

Proof. If
(
|an|
n

)
is not bounded, then there is some subsequence

(
|ank
|

nk

)
such that

|ank
|

nk
≥ k

for all k. By setting bn = 0 for n not in the above subsequence, we may suppose that

n2 ≤ |an| for all n. This implies that |Re an| ≥ 1
2
n2 or | Im an| ≥ 1

2
n2 for all n. Hence, there

is some subsequence (ank
) such that either |Re ank

| ≥ 1
2
k2 for all k or | Im ank

| ≥ 1
2
k2 for all

k. Without loss of generality, suppose that |Re ank
| ≥ 1

2
k2 for all k. By setting bn = 0 for

n not in the sequence, we may suppose that |Re an| ≥ 1
2
n2 for all n. Thus, there is some

subsequence (ank
) such that either Re ank

≥ 1
2
k2 for all k or Re ank

≤ −1
2
k2 for all k. By

setting bn = 0 for n not in the subsequence, without loss of generality, we may suppose that

Re an ≥ 1
2
n2 for all n or Re an ≤ −1

2
n2 for all n. Choose x such that 0 < x < R, write

s = |Re an|
Re an

, cn = |eansx|
eansx , and bn = 1

nn cn. Then lim sup |bn|
1
n = 0 and

∞∑
n=0

bne
ansx =

∞∑
n=0

1

nn
|eansx| =

∞∑
n=0

1

nn
exsRe an ≥

∞∑
n=0

1

nn
ex

1
2
n2

=
∞∑
n=0

(
1

n
ex

1
2
n

)n
=∞.

If it is the case that | Im ank
| ≥ 1

2
k2 for all k, then the preceding proof will work with a minor

adjustment in the choice of x.

The following theorem establishes the first set of equivlences for the synthesis of cyclic

diagonal operators on HR. Of these conditions, we highlight two of them for further inves-

tigation. Condition 3 will allow us to develop some more useful equivalences and condition

5 will allow us to demonstrate large classes of synthetic, cyclic diagonal operators.

Theorem 4.1 Let R ∈ (0,∞) and D be the cyclic diagonal operator on HR having associated

sequence (λn). Then the following are equivalent:

1. The operator D admits spectral synthesis.
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2. Every closed invariant subspace of D is the closed linear span of {zn : n ∈ N} where

N is an arbitrary set of nonnegative integers.

3. Every function f ∈ HR such that f(z) =
∑∞

n=0 fnz
n with fn 6= 0 for all n ≥ 0 is cyclic

for D.

4. There does not exist a non-trivial sequence (wn) ⊆ C for which lim sup |wn|1/n < 1 and

0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0.

5. If, in addition,
{
λn

n
: n ≥ 1

}
is bounded, then g ∈ Hε where g(z) =

∑∞
n=0wne

λnz

whenever (wn) ⊆ C for which lim sup |wn|1/n < 1 and

ε = [ln (1/ lim sup |wn|1/n)]/[sup({|λn|/n : n ≥ 1})]. There does not exist a non-trivial

sequence (wn) ⊆ C for which lim supn→∞ |wn|
1
n < 1 and 0 =

∑∞
n=0wne

λnz for all

z ∈ B(0, ε).

Proof. .

1. 1 ⇔ 2: This equivalence was demonstrated in the remarks at the beginning of the

chapter.

2. 2 ⇒ 3: Let f ∈ HR such that f(z) =
∑∞

n=0 fnz
n and fn 6= 0 for all n ≥ 0 be given.

Since fn 6= 0 for all n ≥ 0, we have by part 2 that the only closed invariant subspace for

D containing f also contains that set {zn : n ≥ 0}. Hence, the only closed, invariant

subspace for D containing f is HR. That is, f is cyclic for D.

3. 3 ⇒ 2: Let M be an arbitrary closed invariant subspace for D other than the empty

set or {0}. Define K to be the set of nonnegative integers k for which there exists

a function f ∈ M such that f(z) =
∑∞

n=0 fnz
n in M with fk 6= 0. Clearly M is a

subset of the closed linear span of {zk : k ∈ K} ≡ M0. By way of contradiction,

assume that M 6= M0. Then there is some g ∈ M0 and some L ∈ H∗R such that

L(M) = {0} and L(g) 6= 0. Define `n = L(zn) and L∗HR → C by L∗h =
∑∞

n=0 `
∗
nhn
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where h(z) =
∑∞

n=0 hnz
n, `∗k = `k for each k ∈ K, and `∗n = 0 for each n /∈ K.

Note that lim supn→∞ |`∗n|
1
n ≤ lim supn→∞ |`n|

1
n < R so that L∗ ∈ H∗R. Also, observe

that, by construction, L∗(g) 6= 0. By Lemma 4.1, there is some s ∈ M such that

s(z) =
∑∞

n=0 snz
n where sn 6= 0 when n ∈ K. Define s∗ to be the function s∗(z) =∑∞

n=0 s
∗
nz

n where s∗n = sn when n ∈ K and s∗n = 1
Rn when n /∈ K. Thus, s∗ ∈ HR

and by hypothesis, s∗ is cyclic for D which implies that span(orbD(s∗)) is dense in

HR. However, by construction, L∗(Dks∗) = L(Dks) = 0 for all k ≥ 0. Since L∗ is

non-trivial, this would imply that span(orbD(s∗)) is not dense in HR. Since this is a

contradiction, M = M0.

4. 3⇒ 4: Let f ∈ HR such that f(z) =
∑∞

n=0 fnz
n and fn 6= 0 for n ≥ 0 and L ∈ H∗R be

given. Write wn = fnL(zn) and observe that lim supn→∞ |wn|
1
n ≤ lim supn→∞ |fn|

1
n ·

lim supn→∞ |L(zn)| 1n < 1
R
R = 1. Moreover, for k ≥ 0, we have that L(Dkf) =∑∞

n=0 λ
k
nfnL(zn) =

∑∞
n=0wnλ

k
n. The vector f is cyclic for D by hypothesis. Thus,

if L(Dkf) = 0 for k ≥ 0, then L = 0 by the Hahn-Banach Theorem.

5. 4⇒ 3. Suppose that there is some non-trivial sequence (wn) such that
∑∞

n=0wnλ
k
n = 0

for k ≥ 0 and lim supn→∞ |wn|
1
n < 1. Define `n = wnR

n, f ∈ HR by f(z) =
∑∞

n=0
1
Rn z

n,

and L ∈ H∗R by Lg =
∑∞

n=0 `ngn where g(z) =
∑∞

n=0 gnz
n. Then by construction L is

non-trivial and L(Dkf) =
∑∞

n=0 `nλ
k
n

1
Rn =

∑∞
n=0wnλ

k
n = 0 for k ≥ 0. Thus, f is not

cyclic.

6. 4 ⇔ 5: Let
{
λn

n
: n ≥ 1

}
be bounded and let (wn) ⊆ C be any sequence for which

lim sup |wn|1/n < 1. Then the series
∑∞

n=0wne
λnz converges uniformly and abso-

lutely on every compact subset of the open ball B(0, ε) by the Root Test where

ε = [− ln lim supn→∞ |wn|
1
n ]/[sup({ |λn|

n
: n ≥ 1})]. Hence, g ∈ Hε where g(z) =∑∞

n=0wne
λnz. Moreover, g(k)(0) =

∑∞
n=0wnλ

k
n and so

∑∞
n=0wne

λnz ≡ 0 for all z in the

open ball B(0, ε) if and only if 0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0. The result follows.

The extra hypothesis preceding condition 5 of Theorem 4.1 is needed in light of the lemma
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preceding the theorem.

Concerning condition 4 of Theorem 4.1, in 1921, Wolff [22] gave the first example of a

non-trivial sequence (wn) ⊆ C and a sequence (λn) ⊆ C of distinct complex numbers for

which 0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0. In Wolff’s example, the sequence (λn) is bounded

(and so lim sup |λn|1/n ≤ 1) and (wn) is in `1. In 1952, Wermer showed that the condition

0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0 is equivalent to the operator D on a separable complex Hilbert

space H diagonalizable with respect to an orthonormal basis {en} for H and satisfying

Den = λnen for all n ≥ 0 failing to admit spectral synthesis (see [21, Thm. 1, p. 270]). The

full set of equivalent conditions was given in Theorem 1.1

Note that it is the precise rate of decay of the coefficients (wn) occuring in the condition

0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0 that is different from Theorem 1.1 to Theorem 4.1. For

instance, condition 4 of Theorem 4.1, which pertains to diagonal operators on HR, requires

that lim sup |wn|1/n < 1 whereas the analogous condition 2 of Theorem 1.1, which pertains

to diagonal operators on Hilbert spaces, only requires the weaker condition that (wn) ∈ `1.

Observe that while we have defined what the dual of HR is as a vector space, we have not

placed any topology on it. As such, it is difficult to speak of the continuity of the adjoint

of an operator D. What the precise nature of H∗R is will have to first be answered before a

condition equivalent to condition 7 in Theorem 1.1 can be given.

Regarding condition 3 in Theorem 1.1, the study of Wolff-Denjoy series has a long and rich

history. Of particular interest has been conditions for an analytic function to be representable

as a Wolff-Denjoy series, and conditions for such a representation, if one exists, to be unique.

Borel, Beurling, and Carleman all gave sufficient conditions for the representation of an

analytic function as a Wolff-Denjoy series to be unique in terms of the rate of decay of the

coefficients in the representing series. Sibilev in 1995 gave a definitive uniqueness theorem

of this type (see Sibilev [20]). Wolff-Denjoy series have also been studied extensively by

Poincare, Wolff, Borel, Carleman, and Beurling, amongst others, mainly in connection with

quasianalyticity and analytic continuation (see the recent monograph of Ross and Shapiro
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[14]).

Wolff’s example of a nontrivial sequence (wn) ∈ `1 and bounded sequence of distinct

complex numbers (λn) for which 0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0 has been extended to sequences

{λn} of distinct complex numbers which are unbounded. For instance, in 1936, Natanson

showed that there exists a sequence (wn) ⊆ C for which
∑∞

n=0 |wn||λn|k < ∞ and 0 ≡∑∞
n=0wnλ

k
n for all k ≥ 0 in the special case λn = n for all n ≥ 0 (see 5.7.8c(v) on p. 128 of

Nikol’ skĭi [12]). In 1959, Makarov generalized Natanson’s example to include any sequence

(λn)C of complex numbers for which |λn| → ∞ (see 5.7.8c(vi) on p. 128 of Nikol’ skĭi [12]).

However, we will see as consequences of Corollary 4.4 and Theorem 4.5 below that the

coefficients (wn) which occur in Wolff’s example and in Natanson’s example fail to satisfy

the condition that lim sup |wn|1/n < 1. In fact, it remains an open question as to whether or

not every cyclic diagonal operator on HR admits spectral synthesis. That is, it is not known

if there exists a sequence (λn) of distinct complex numbers for which lim supn→∞ |λn|
1
n ≤ 1

and a nontrivial sequence (wn) ⊆ C for which lim supn→∞ |wn|
1
n < 1 with 0 ≡

∑∞
n=0wnλ

k
n

for all k ≥ 0.

We now give a simple, but useful, reduction concerning the problem of spectral synthesis.

Theorem 4.2 Let D : HR → HR, D′ : H1 → H1, and D : H(C) → H(C) be diagonal

operators with associated sequence (λn).

1. The operator D is synthetic if and only if D′ is synthetic.

2. If D′ is synthetic, then D is synthetic.

Proof. Let f ∈ HR, g ∈ H1, and h ∈ H(C) such that f(z) =
∑∞

n=0 fnz
n, g(z) =∑∞

n=0 gnz
n, and h(z) =

∑∞
n=0 hnz

n and fn, gn, hn /∈ {0} for all n ≥ 0 be given.

1. Define D0 = D−1
R . Observe that Df and D0g both have all non-zero coefficients.

By Theorem 4.1 condition 3, if D is synthetic, then D0g is cyclic for D. Hence, by

Propostion 3.1 (DRD0)g = g is cyclic for D′. Since g was arbitrary, by condition 3 of

Theorem 4.1, D′ is synthetic. Similarly, if D′ is synthetic, then D is synthetic.
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2. If D′ is synthetic, then by condition 3 of Theorem 4.1, u is a cyclic vector for D′. Hence,

by Proposition 3.1, (Dhu) = h is cyclic for D. Since h was arbitrary, by condition 3 of

Theorem 4.1, D is synthetic.

The above results show that all questions of synthesis can be reduced to studying whether

or not some operator is synthetic on H1 or on H(C). Moreover, we know that if some operator

is synthetic on H1, then it is synthetic on H(C). As a first application of this result we give

some more equivalences for a diagonal operator to be synthetic. Before we do, recall that

D ⊆ C(H1) denotes the subspace of diagonal operators on H1.

Theorem 4.3 Let D : H1 → H1 be a cyclic diagonal operator. Then the following are

equivalent:

1. The operator D is synthetic.

2. The function u is cyclic.

3. There is some f ∈ H1 such that f(z) =
∑∞

n=0 fnz
n where fn 6= 0 for n ≥ 0,

lim inf |fn|
1
n = 1, and f is cyclic.

4. There is some sequence (fn) ∈ H1 such that fn(z) =
∑∞

k=0 fn,kz
k where fn,k 6= 0 for

n, k ≥ 0, 0 < lim inf |fn,k|
1
k = Rn, limn→∞Rn = 1, and fn is cyclic for all n.

5. For each j ≥ 0, there is some sequence of polynomials (pn) ⊂ C[z], depending on j,

such that limn→∞ pn(λk) = δj,k and lim supn→∞ supk>j({|pn(λk)|
1
k }) ≤ 1.

6. Let A be the algebra generated by D and the identity. That is A = span({Dn : n ≥ 0}).

In the SOT, D = A.

7. Let A be the algebra generated by D and the identity. In the SOT, πk ∈ A for all

k ≥ 0.

Proof.
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1. 1⇒ 2: This follows from part 3 of Theorem 4.1 and the fact that u(z) =
∑∞

n=0 z
n.

2. 2⇒ 3: This follows by hypothesis and the fact that u(z) =
∑∞

n=0 z
n.

3. 3⇒ 4: This follows by hypothesis, by defining fn = f , where f is the function whose

existence is given.

4. 4⇒ 1: This follows from part 2 of Theorem 3.4 and part 3 of Theorem 4.1.

5. 2 ⇔ 5: Note that u is cyclic for D if and only if for each j ≥ 0, we have that

zj ∈ span(orbD(u)). Let j ≥ 0 be given. The function zj ∈ span(orbD(u)) if and

only if there is some sequence (pn) ⊆ C[z] such that pn(D)u → zj. Observe that

(pn(D)u)(z) =
∑∞

k=0 pn(λk)z
k. By Theorem 1.2 and Lemma 1.2 pn(D)u → zj if and

only if limn→∞ pn(λk) = δj,k and lim supn→∞ supk>j({|pn(λk)|
1
k }) ≤ 1.

6. 7 ⇒ 2: First suppose that πk ∈ A for all k ≥ 0. Let j ≥ 0 be given. Since πj ∈ A

and D is metrizable by Proposition 2.4, there is some sequence (xn) ∈ A such that

limn→∞ xn = πj. Since xn ∈ A, for each n there some pn ∈ C[z] such that xn = pn(D).

Since C(H1) has been endowed with the SOT, pn(D)u = xnu → πju = zj. Hence,

zj ∈ span(orbD(u)). Since j was arbitrary, we have that zj ∈ span(orbD(u)) for all

j ≥ 0. Hence, span(orbD(u)) = H1. That is, u is cyclic.

7. 2 ⇒ 7: Let j ≥ 0 be given. Since u is cyclic, there is a sequence of polynomials (pn)

such that pn(D)u→ zj = πju. Let g ∈ H1 be given and recall that Dgu = g. Thus,

pn(D)g = pn(D)Dgu = Dgpn(D)u→ Dgz
j = gjz

j = πjg.

Since g ∈ H1 was arbitrary, we have that pn(D)g → πjg for all g ∈ H1. Also, the fact

that pn(D) ∈ A for all n yields that πj ∈ A. Since j ≥ 0 was arbitrary, we have that

πj ∈ A for all j ≥ 0.



41

8. 6⇔ 7: This follows immediately from part 6 of this theorem and part 3 of Proposition

2.4.

Some remarks are in order. The first regards condition 2. That D is synthetic is a

statement about the closed invariant subspaces of D. In general, knowing all of the closed

invariant subspaces of an operator is equivalent to knowing all of the cyclic vectors of the

operator. This follows from the fact that f is cyclic if and only if f is not in any proper closed

invariant subspace. However, cyclic diagonal operators give examples where one needs to

know substantially less. In particular, one needs only to check whether or not the function u

is cyclic. If it is, then one knows all of the closed, invariant subspaces. If it is not cyclic, then

one knows that there exists some closed, invariant subspace which is not the closure of the

span of some set of monomials. In particular, one knows that the subspace span(orbD(u))

is non-trivial.

Second, note that a consequence of condtion 4 is that if D is not synthetic, then there is

some 0 ≤ R < 1 such that if f ∈ H1, f(z) =
∑∞

n=0 fnz
n, and R ≤ lim inf |an|

1
n , then f is not

cyclic. Note that this R represents a type of upper bound on how fast the coefficients of f

decay. Hence, another way to say this is that, if D is not synthetic and the coefficients of f

decay too slowly, then f is not a cyclic vector for D.

Third, condition 5 is useful because it gives a purely computational approach to deter-

mining synthesis which can potentially take advantage of the literature written on poly-

nomials. In fact, the above result could be strengthened slightly. To see this, let p ∈

C[z] be given and write n = deg(p). Then there is some M > 0 such that |p(z)| ≤

max({M,M |z|n}) for all z ∈ C. If (λk) ⊆ C is a sequence such that lim supk→∞ |λk|
1
k ≤ 1,

then we have that lim supk→∞ |p(λk)|
1
k ≤ lim supk→∞max({M 1

k ,M
1
k (|λk|

1
k )n}) = 1. Hence,

supk>j({|pn(λk)|
1
k }) = maxk>j({|pn(λk)|

1
k }).

Observe that the growth condition on the polynomials is potentially delicate. If it is the

case that {λn : n ≥ 0} is unbounded and p ∈ C[z] is nonconstant, then the set {p(λn) : n ≥ 0}

is unbounded. Hence, supk>j({|pn(λk)|
1
k }) > 1. Therefore, lim supn→∞ supk>j({|pn(λk)|

1
k }) ≥
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1. In other words, the polynomials satisfy a minimal type of growth condition.

Fourth, while condition 7 is clearly weaker than condition 6, condition 6 has been included

because it is interesting. As was already noted in Propostion 2.4, D is closed in the SOT.

Thus, A ⊆ D for any diagonal operator D. It is only in the case of a synthetic diagonal

operator D that A = D.

It should be noted that what really contributes to the proof of Theorem 4.3 is the obser-

vation that we should concentrate our attention on the function u. It is the universal nature

of this function that yields the various results. This is in contrast to diagonal operators on

H(C). In this case, it is not known if any such universal vectors exist.

Before producing some examples of synthetic operators, it will be useful to talk about

diagonal operators formed from a subsequence of a diagonal operator. That is, given

a diagonal operator D with associated sequence (λk) and a subsequence (λkj
) such that

lim supj→∞ |λkj
|
1
j ≤ 1, there is a diagonal operator D′ with associated sequence (λkj

). A

natural problem is to determine if D′ is synthetic when it is known that D is synthetic. We

shall start with a simple lemma.

Lemma 4.3 Let D : HR → HR be a diagonl operator and a, b ∈ C be given such that a 6= 0

and R ∈ {1,∞}. Then D is synthetic if and only if aD + b is synthetic.

Proof. Note that if M is a closed invariant subspace of D, then M is a closed invariant

subspace of aD + b and conversely. Thus, all of the closed, invariant subspaces of D are

spanned by the monomials if and only if all of the closed, invariant subspaces of aD + b are

spanned by the monomials.

Proposition 4.1 Let D : HR → HR be a diagonal operator with associated sequence (λn)

where R ∈ {1,∞}. Suppose (λnk
) is such that there is some M > 0 where nk ≤ Mk for

k ≥ 1 and define D′ : HR → HR to be the diagonal operator with associated sequence (λnk
).

If D is synthetic, then D′ is synthetic.
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Proof. We shall prove this by contraposition for the case R = 1. The case R = ∞

follows similarly. First, note that the operator D′ is defined since lim supk→∞ |λnk
| 1k =

lim supk→∞(|λnk
|

1
nk )

nk
k ≤ lim supk→∞max({(|λnk

|
1

nk )M , 1}) = 1. If D′ is not synthetic, then

there is some sequence (wk) ⊆ C such that lim supk→∞ |wk|
1
k < 1 and 0 =

∑∞
k=0wkλ

j
nk

for

j ≥ 0. Define γn = wk if n = nk for some k and γn = 0 otherwise. Then
∑∞

n=0 γnλ
j
n =∑∞

k=0wkλ
j
nk

= 0 for all j ≥ 0. Also, lim supn→∞ |γn|
1
n = lim supk→∞ |wk|

1
nk

= lim supk→∞(|wk|
1
k )

k
nk ≤ lim supk→∞(|wk|

1
k )

1
M < 1.

We now present a result which says that including or discarding a finite number of

eigenvalues does not change whether or not the operator is synthetic. To this end, suppose

that σ is a permutation of the nonnegative integers. It is immediate from condition 4 of

Theorem 4.3 that D : HR → HR with associated sequence (λk) is synthetic if and only

if D′ : HR → HR with associated sequence (λσ(k)) is synthetic as long as both operators

are defined. Hence, without loss of generality, we may assume that the eigenvalues we are

including or discarding are the first eigenvalues in the associated sequence.

Proposition 4.2 Let D : HR → HR be a diagonal operator with assoicated sequence (λn)

and choose λ /∈ {λn : n ≥ 0}.

1. Let D′ : HR → HR be a diagonal operator with associated sequence (λ′n) such that

λ′0 = λ and λ′n = λn−1 for n ≥ 1. If D is synthetic, then D′ is synthetic.

2. Let D′ : HR → HR be a diagonal operator with associated sequence (λ′n) such that

λ′n = λn+1 for n ≥ 0. If D is synthetic, then D′ is synthetic.

Proof.

1. Suppose that D′ is not synthetic. Then there is some w and (wn) such that

lim supn→∞ |wn|
1
n < 1 and 0 = wλk +

∑∞
n=0wnλ

k
n for k ≥ 0. Thus, for k ≥ 1 we have

that



44

∞∑
n=0

wn(λn − λ)k =
∞∑
n=0

wn

k∑
j=0

(
k

j

)
λjn(−λ)k−j =

k∑
j=0

(
k

j

)
(−λ)k−j

∞∑
n=0

wnλ
j
n

=
k∑
j=0

(
k

j

)
(−λ)k−j(−wλj) = −wλk

k∑
j=0

(
k

j

)
(−1)k−j1j

= −wλk((−1) + 1)k = 0.

Define γn = wn(λn − λ). Since lim supn→∞ |λn|
1
n ≤ 1, we have that lim supn→∞ |λn −

λ| 1n ≤ 1. Thus, lim supn→∞ |γn|
1
n < 1. and

∑∞
n=0 γn(λn − λ)k = 0 for all k ≥ 0. Hence,

D − λ is not synthetic. This implies that D is not synthetic.

2. This is a corollary to the previous proposition.

4.2 Examples Of Synthetic Operators

In this section, we shall present two classes of examples of synthetic operators. These classes,

combined with Lemma 4.3, will produce a large class of synthetic operators.

Theorem 4.4 Every cyclic diagonal operator D on HR whose eigenvalues {λn : n ≥ 0} are

bounded admits spectral synthesis.

Proof. By means of contradiction, assume that D is a cyclic diagonal operator on HR

whose eigenvalues {λn : n ≥ 0} are bounded but which fails spectral synthesis. Without

loss of generality, by Lemma 4.3, we my assume that |λn| < 1 for all n ≥ 0. By condition 4

of Theorem 4.1, there exists a non-trivial sequence (wn) ⊆ C for which lim sup |wn|1/n < 1

and 0 ≡
∑∞

n=0wnλ
k
n for all k ≥ 0. Observe that the series

∑∞
n=0wne

λnz converges uniformly

on compact subsets of C. To see this, note that if R > 0 is given and M = sup({|λn| :

n ≥ 0}), then |
∑∞

n=0wne
λnz| ≤

∑∞
n=0 |wn|eMR < ∞ for |z| ≤ R. Define g ∈ H(C)

by g(z) =
∑∞

n=0wne
λnz. Since 0 =

∑∞
n=0wnλ

k
n = g(k)(0) for all k ≥ 0, we have that
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g(z) = 0 for all complex numbers z. Also, observe that since |λn|
1
n < 1, there is some

γ ∈ (lim supn→∞ |λn|
1
n , 1) and c > 0 such that |wn| ≤ cγn for all n ≥ 0. In particular,

(wn) ∈ `1. Hence by Proposition 2 of Sibilev [20, p. 147], 0 ≡
∑∞

n=0wn/(z − λn) whenever

|z| > 1. Since
∑∞

n=0
ln (cγn)
n2 =

∑∞
n=0

ln c
n2 +

∑∞
n=0

ln γ
n

= −∞, we have that wn ≡ 0 for all n ≥ 0

by the theorem on p. 146 of Sibilev [20], a contradiction.

It follows from Theorem 4.4 that there exist cyclic diagonal operators on HR admitting

spectral synthesis the closure of whose eigenvalues {λn : n ≥ 0} have nonempty interior.

This is in contrast to the case for diagonalizable operators on a separable complex Hilbert

space (see Scroggs [18, Cor. 3.1, p. 104]).

It also follows from Theorem 4.4 that the coefficients {wn} in Wolff’s example do not

satisfy the condition that lim sup |wn|1/n < 1.

Finally, note that if {λn : n ≥ 0} is bounded, then inf({|λi − λj| : 0 ≤ i < j}) = 0.

Nonetheless, since the set of cyclic diagonal operators are synthetic, they have as common

cyclic vectors all functions with nonzero coefficients in their expansions by 4.1 condition 3.

Hence, Theorem 4.4 is a companion to Theorem 3.5.

Theorem 4.5 Let D : H1 → H1 be a cyclic diagonal operator with associated sequence (λn)

such that (λn

n
) and (Imλn) are bounded sequences and (Reλn) is an increasing sequence.

Then D is synthetic.

Proof. Suppose that D is not synthetic. Then there is some non-zero sequence (γn) and

ε > 0 such that lim supn→∞ |γn|
1
n < 1,

∑∞
n=0 γne

λnz converges absolutely and uniformly on

B(0, ε), and
∑∞

n=0 γne
λnz = 0 on B(0, ε). Note also that

∑∞
n=0 γne

λnz converges absolutely

and uniformly on the set G = {z = a+ bi : a ∈ (−∞, 0), b ∈ (−1, 1)}. To see this, let K ⊂ G

be compact, R = sup({Re z : z ∈ K}) < 0, and r = inf({Re z : z ∈ K}). Write z = a + bi

and λn = an + bni for each z ∈ K and all n ≥ 0 and A = max({a0r, a0R}). By assumption,

there is some M such that |bn| ≤M . Since (an) is an increasing sequence, for all z ∈ K and
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n ≥ 0, we have that Reλnz = ana− bnb ≤ A+M . Thus, for all z ∈ K, we have that

|
∞∑
n=0

γne
λnz| ≤

∞∑
n=0

|γn|eReλnz ≤ eA+M

∞∑
n=0

|γn| <∞.

Hence,
∑∞

n=0 γne
λnz converges absolutely and uniformly on G. Since G ∩ B(0, ε) 6= ∅ and

open and
∑∞

n=0 γne
λnz = 0 on G∩B(0, ε), then

∑∞
n=0 γne

λnz = 0 on G. Let γn0 be such that

γn0 6= 0 and γk = 0 for k < n0. Then −γn0 =
∑∞

n>n0
γne

(λn−λn0 )z. Since (an) is an increasing

sequence, we have that for x < 0

0 < |γn0| ≤
∞∑

n>n0

|γn||e(λn−λn0 )x| ≤
∞∑

n>n0

|γn|e(an−an0 )x ≤ e(an0+1−an0 )x

∞∑
n>n0

|γn| → 0

as x→ −∞. Since this is a contradiction, D is synthetic.

Corollary 4.1 The diagonal operator D : H1 → H1 with associated sequence (λn = n) is

synthetic.

It follows from Theorem 4.5 that the coefficients (wn) in Natanson’s example do not

satisfy the condition that lim supn→∞ |wn|
1
n < 1.

Moreover, observe that if lim supn→∞ |λn|
1
n < 1 then the set {λn : n ≥ 0} is bounded.

Hence, when it comes to questions of synthesis, the only interesting diagonal operators are

those which have associated sequences such that lim supn→∞ |λn|
1
n = 1.

A final result for this chapter is the observation that the set of synthetic diagonal oper-

ators is dense in D in the SOT. This is the content of the next result.

Corollary 4.2 The set of synthetic operators is dense in D in C(H1) in the SOT.

Proof. Denote by S the set of synthetic, cyclic diagonal operators and let D ∈ D be given.

Write f(z) =
∑∞

k=0 akz
k where D = Df . Fix n ≥ 1 and define an,0 = a0 and recursively

define an,k = ak+ m
n(k+1)

where m = min({j : ak+ j
n(k+1)

/∈ {an,0, . . . , an,k−1} and 0 ≤ j ≤ k})



47

for 0 ≤ k ≤ n. Recursively choose an,k ∈ [0, 1] \ {an,j : 0 ≤ j ≤ k} for k ≥ n+ 1. For n ≥ 1

define fn ∈ H1 by fn(z) =
∑∞

k=0 an,kz
k.

Observe that each fn has bounded distinct coefficients. Hence, Dfn is a cyclic, synthetic

operator. If fn → f in H1, then Dfn → Df = D in the SOT. To see that fn → f , observe

that limn→∞ an,k = ak and that sup({|an,k − ak|
1
k : k > 0}) ≤ sup({n−1

m , (|ak| + 1)
1
k : 1 ≤

m ≤ n, k > n}). Since lim supk→∞ |ak|
1
k ≤ 1, lim supn→∞ sup({|an,k − ak|

1
k : k > 0}) ≤ 1.

Thus, fn → f by Theorem 1.2. Therefore, S = D.
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CHAPTER 5

Polynomial Approximation And

Synthesis

Note that the examples of synthetic diagonal operators in the last chapter both made use

of condition 5 in Theorem 4.1. While this was useful in producing large classes of synthetic

diagonal operators, it would also be nice to have some results concerning the synthesis of

diagonal operators such that the sequence
(
λn

n

)
is not bounded. For instance, is the operator

with associated sequence (λn = n2) synthetic? In such cases, we can not use condition 5

of Theorem 4.1. In the absence of clever arguments involving some of the more abstract

conditions in Theorem 4.1 or Theorem 4.3, we turn to more computational results. In

particular, we consider condition 4 of Theorem 4.1 or condition 5 of Theorem 4.1. Since

there is a large body of literature concerning polynomials, it would seem that condition 5 in

Theorem 4.3 is a natural place to look.

Also, note that by Theorem 4.5 and condition 5 in Theorem 4.3, for each nonnega-

tive integer j, there is some sequence of polynomials (pn) such that pn(k) → δj,k and

lim supn→∞ sup{|pn(k)| 1k : k > j} ≤ 1. While we understand that such polynomials exist,

the question becomes what do they look like? For instance, one may consider the sequence

pn(z) =
∏n

k=1
z−k
−k or qn(z) =

∏n
k=1

(z−k)(z+k)
−k2 since qn → sinπz

πz
in H(C) (see [4] p. 175).



49

However, for n ≥ 2 we have

|pn(2n)| =
n∏
k=1

2n− k
k

=
n∏
k=1

n+ k − 1

k
=

n∏
k=1

1 +
n− 1

k
≥

n∏
k=1

1 +
n− 1

n
=

(
3

2

)n

and

qn(n+ 1) =

(
n∏
k=1

n+ 1− k
k

)(
n∏
k=1

n+ 1 + k

k

)
=

n∏
k=1

1 +
n+ 1

k
≥

n∏
k=1

1 +
n+ 1

n
≥ 2n.

Thus, for any j ≥ 0, lim supn→∞ sup({|pn(k)| 1k : k > j}) ≥
(

3
2

) n
2n > 1 and

lim supn→∞ sup({|qn(k)| 1k : k > j}) ≥ 2. Hence, the obvious choices for the appropriate

polynomials do not work. So what polynomials do work?

In the first section of this chapter, we will prove some results which help us to determine

the zeros of the polynomials that possess the prescribed behavior. In the second section, we

will provide an example from which to, it is hoped, extrapolate techniques to answer questions

about synthesis for diagonal operators for which the sequence
(
λn

n

)
is not bounded.

5.1 Preliminaries

Let us make a few simple observations. To this end, let D : H1 → H1 be a cyclic, diagonal

operator with associated sequence (λn). First, by Proposition 4.2, we may assume, without

loss of generality, that λ0 = 0. Next, suppose that there is some sequence (pn) ⊂ C[z]

such that pn(λk) → δ0,k and lim supn→∞ supk>0 |pn(λk)|
1
k ≤ 1. Since pn(0) → 1, we may

suppose without loss of generality, that pn(0) 6= 0 for all n ≥ 1. Hence, we may define

qn(z) = 1
pn(0)

pn(z) and observe that qn(λk) → δ0,k, lim supn→∞ supk>0 |qn(λk)|
1
k ≤ 1, and

qn(0) = 1 for all n. Thus, in our attempts to construct sequences of polynomials, we need

only focus our attention on polynomials of the form
∏n

k=1
z−zk

−zk
. Third, if x > 0 and Re z < 0,

then |x−z|2
|z|2 = (x−a)2+b2

a2+b2
≥ a2+b2

a2+b2
= 1 where z = a+ bi. Hence, if we have positive eigenvalues

and are considering polynomials of the aforementioned form, we will assume that Re zk > 0.
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Lemma 5.1 For w, z ∈ C,
∣∣w−z
−z

∣∣ =
(

1 + −2Re(wz)+|w|2
|z|2

) 1
2
.

Proof. Observe that

∣∣∣∣w − z−z
∣∣∣∣2 =

(z − w)(z − w)

|z|2
=
|z|2 − 2 Re(wz) + |w|2

|z|2
= 1 +

−2 Re(wz) + |w|2

|z|2
.

Proposition 5.1 Let (zn) ⊂ C such that 0 < Re(zn) → ∞ and x0 > 0 such that x0 /∈

{zn : n ≥ 1} be given. Define pn(x) =
∏n

k=1
x−zk

−zk
. Then limn→∞ pn(x0) = 0 if and only if∑∞

k=1
Re(zn)
|zk|2

=∞.

Proof. If x0 /∈ {zn : n ≥ 1}, then limn→∞ |pn(x0)| = 0 if and only if
∏∞

n=1
|x0−zn|
|−zn| = 0 if and

only if
∑∞

n=1 ln |x0−zn|
|−zn| = −∞. Further, by Lemma 5.1, pn(x0)→ 0 if and only if

−∞ =
∞∑
n=1

1

2
ln

(
1 +
−2 Re(x0zn) + x2

0

|zn|2

)
=
∞∑
n=1

1

2
ln

(
1 + x0

−2 Re(zn) + x0

|zn|2

)
.

Since Re(zn) → ∞, there is some N such that −2 Re(zn) + x0 < 0 and x0
2Re(zn)−x0

|zn|2 =∣∣∣x0
−2Re(zn)+x0

|zn|2

∣∣∣ < 1
2

for n ≥ N . Thus, by Equation 5.3 on p. 165 in [4] for n ≥ N ,

1

2
x0

2 Re(zn)− x0

|zn|2
≤ − ln

(
1 + x0

−2 Re(zn) + x0

|zn|2

)
=

∣∣∣∣ln(1 + x0
−2 Re(zn) + x0

|zn|2

)∣∣∣∣ ≤ 3

2
x0

2 Re(zn)− x0

|zn|2
.

Hence,

−3

4
x0

2 Re(zn)− x0

|zn|2
≤ ln

|x0 − zn|
| − zn|

≤ −1

4
x0

2 Re(zn)− x0

|zn|2

for n ≥ N . This implies that
∑∞

n=1 ln |x0−zn|
|−zn| = −∞ if and only if

∑∞
n=N x0

2Re(zn)−x0

|zn|2 =

x0

∑∞
n=N

2Re(zn)−x0

|zn|2 =∞. Clearly, this happens if and only if
∑∞

n=1
Re(zn)
|zn|2 =∞.



51

Proposition 5.2 Suppose that (zn) ⊂ R be such that zn ↑ ∞ and z1 ≥ e
2
. Define pn(x) =∏n

j=1
x−zj

−zj
. Then supx>x0

|pn(x)| 1x ≤ max({(2zk)
k

2zk , (2zk+1)
k+1

2zk+1 , . . . , (2zn)
n

2zn }) where x0 ∈

(2zk, 2zk+1].

Proof. Observe that
|x−zj |
zj
≤ 1 when 0 ≤ x ≤ 2zj. Next, note that if x > 2zj, then

since zj ≥ e
2
> 1, we have

|x−zj |
zj

= x
zj
− 1 ≤ x. Hence, if 2zk < x ≤ 2zk+1, then |pn(x)| =∏n

j=1
|x−zj |
zj
≤
∏k

j=1
|x−zj |
zj
≤ xk. Similarly, when x > 2zn, |pn(x)| =

∏n
j=1

|x−zj |
zj
≤ xn. Thus,

|pn(x)| 1x ≤ x
k
x when 2zk < x ≤ 2zk+1 and |pn(x)| 1x ≤ x

n
x when x > 2zn. Observe that the

function g(x) = x
1
x achieves its maximum at x = e, decreases on [e,∞), and 2zk ≥ e for all

k ≥ 1. Hence,

sup
2zk<x≤2zk+1

|pn(x)|
1
x ≤ sup

2zk<x≤2zk+1

x
k
x = (2zk)

k
2zk

and

sup
x>2zn

|pn(x)|
1
x ≤ sup

x>2zn

x
n
x ≤ (2zn)

n
2zn .

Therefore, supx>x0
|pn(x)| 1x ≤ max({(2zk)

k
2zk , . . . , (2zn)

n
2zn }) and the theorem is proven.

5.2 Proof Of Synthesis By Polynomial Approximation

Using condition 5 in Theorem 4.3 and the preceding propositions, we now present a con-

structive argument that the operator D : H1 → H1 with associated sequence (λn = n) is

synthetic.

Theorem 5.1 Let D : H1 → H1 be the diagonal operator with associated sequence (λn = n).

The operator D is synthetic.

Proof. Write zk = (k + 3) ln(k + 3) ln(ln(k + 3)). Note that since

∞∑
k=3

1

k ln(k) ln(ln k)
≥
∫ ∞

3

1

x ln(x) ln lnx
dx =

∫ ∞
ln 3

1

x lnx
dx =

∫ ∞
ln ln 3

1

x
=∞, (5.1)
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n=1

1
(k+3) ln(k+3) ln(ln(k+3))

= ∞. Define pn(x) =
∏n

k=1
x−zk

−zk
, and note that z1 >

e
2
. Thus,

from Proposition 5.2, limn→∞ pn(x) = δ0,x for x ≥ 0. Define

g(x) = (2(x+ 3) ln(x+ 3) ln(ln(x+ 3)))
1

2 ln(x+3) ln(ln(x+3))

= (2 ln(x+ 3)) ln(ln(x+ 3)))
1

2 ln(x+3) ln(ln(x+3)) · (x+ 3)
1

2 ln(x+3) ln(ln(x+3))

for x > 0. Since d
dx

1
2 ln(x+3) ln(ln(x+3))

ln(x+ 3) < 0 and (2 ln(x+ 3) ln(ln(x+ 3)))
1

2 ln(x+3) ln(ln(x+3))

decreases when 2 ln(x + 3) ln(ln(x + 3)) > e, we have that g is decreasing on (M,∞) where

M is sufficiently large. Moreover, since ln g(x) = 2+ln(x+3)+ln(ln(x+3))+ln(ln(ln(x+3)))
2 ln(x+3) ln(ln(x+3))

→ 0 as

x→∞, g(x)→ 1 as x→∞. Also,

(2zk)
k

2zk = (2(k + 3) ln(k + 3) ln(ln(k + 3)))
k

2(k+3) ln(k+3) ln(ln(k+3))

≤ (2(k + 3) ln(k + 3) ln(ln(k + 3)))
1

2 ln(k+3) ln(ln(k+3)) = g(k).

Choose K ∈ N such that g(K) < 1+ε and K ≥M . Since pn(k)→ 0 as n→∞ for k ≥ 1,

there exists an N ≥ K such that |pn(k)| ≤ 1 for 1 ≤ k ≤ 2(K + 4) ln(K + 4) ln(ln(K + 4)) =

2zK+1 and n ≥ N . Then by Proposition 5.2, for n ≥ N , we have that

sup
k>1
|pn(k)|

1
k = sup

k>zK+1

|pn(k)|
1
k ≤ sup

x>zK+1

|pn(x)|
1
x ≤ max({(2zK)

K
2zK , . . . , (2zn)

n
2zn })

≤ max({g(K), . . . , g(n)}) = g(K) < 1 + ε.

Thus, lim supn→∞ supk>1 |pn(k)| 1k ≤ 1.

Let j ∈ N be given and define qn(x) =
∏j−1

m=0
x−m
j−mpn(x− j). By construction,

limn→∞ qn(k) = δj,k. Also, we have for k > j that

|qn(k)|
1
k ≤ k

j
k (|pn(k − j)|

1
k−j )

k−j
k ≤ k

j
k max({|pn(k − j)|

1
k−j , 1}).
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Let ε > 0 be given and choose K ∈ N such that K ≥ max({e, j}) and K
j
k <

√
1 + ε.

Choose N such that sup({|pn(k − j)|
1

k−j : k > j}) <
√

1 + ε and |qn(k)| ≤ 1 for j + 1 ≤

k ≤ K. Then for n ≥ N , we have that sup({|qn(k)| 1k : k > j}) < 1 + ε. Therefore,

lim supn→∞ sup({|qn(k)| 1k : k > 0}) ≤ 1 and D is synthetic by condition 5 of Theorem 4.3.

5.3 Concluding Remarks

In this document, it was shown that H(G) embeds in C(H(G)) (Theorem 1.5 and Proposition

2.4). In Chapter 3, we classified which diagonal operators are cyclic (Theorem 3.1), showed

that cyclicity is heavily related to the decay rate of coefficients of a vector (Proposition 3.2

and Theorem 3.4), and demonstrated the existence of common cyclic vectors for a given

family of diagonal operators (Theorem 3.5). Theorem 4.1 and Theorem 4.3 give a number

of equivalent conditions for a diagonal operator to be synthetic while Theorem 4.4 and

Theorem 4.5 demonstrate that diagonal operators with certain restrictions on their growth

rates are synthetic. Finally, in Theorem 5.1 we constructed polynomials whose existence

was guaranteed by Theorem 4.3 and Theorem 4.5. With these results in mind, it seems that

there are least four places to continue researching.

First, observe that if L ∈ H∗1 and `n = L(zn), then lim supn→∞ |`n|
1
n < and f ∈ H1

where f(z) =
∑∞

n=0 `nz
n. Hence, in an algebraic way, H∗1 ⊆ H1. That is, H1 has a similar

relationship to its dual that a Hilbert space has. It may be possible to exploit this to learn

more about which cyclic diagonal operators are synthetic. To see this, recall from Theorem

4.3 that if D is a cyclic diagonal operator and A is the algebra generated by D, then A = D

in the SOT if and only if D is synthetic. Also observe that since D is closed and DD′ = D′D

for all D′ ∈ D, that D is the double commutant of A. Thus, it may be possible to prove

some type of analogue of the double communtant theorem for C(H1). The real work in such

a task would be to define a suitable topology on H∗1 . In particular, one should define the
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topology on H∗1 in such a way that adjoint operators are continuous. This would serve to

extend the work in section 1.5 of this document.

Second, notice that issues of decay rates of coefficients of functions as well as eigenvalues

of operators appear frequently. These should be explored further. In particular, in light

of condition 4 in Theorem 4.3 and Corollary 3.1, a conjecture that should investigated is

the following. Suppose D and D′ are cyclic diagonal operators with nonnegative, real,

unbounded, and increasing associated sequences (λn) and (λ′n) respectively. If λ′n ≤ λn

for n ≥ 0 and D is synthetic, is D′ synthetic? Similarly, if λ′n ≥ λn for n ≥ 0 and D

is not synthetic, is D′ not synthetic? Another conjecture along these lines is that given

a non-synthetic operator, it is possible to construct another non-synthetic operator whose

eigenvalues grow faster and which has fewer cyclic vectors than the first operator.

Third, determining whether or not there are common cyclic vectors for all diagonal

operators should continue to be investigated. Note that from Theorem 3.5, all cyclic diagonal

operators whose eigenvalues are separated have a residual set of common cyclic vectors.

Observe that given an infinite set {λn : n ≥ 0} such that inf({|λm − λn : m 6= n}) > 0,

{λn : n ≥ 0} must be unbounded. Hence, it would be natural to wonder whether or not

diagonal operators with bounded eigenvalues have common cyclic vectors. However, that

is guaranteed by Theorem 4.5 and condition 3 in Theorem 4.1. Thus, the family of cyclic

diagonal operators with bounded eigenvalues or separated eigenvalues has a residual set of

common cyclic vectors. By condition 3 in Theorem 4.1, if there is no common cyclic vector to

all cyclic diagonal operators, then there exists an non-synthetic cyclic diagonal operator. It

would be worth considering if the converse is true. This may be connected to the conjectures

in the preceding paragraph.

Finally, observe that the estimates in the argument of Proposition 5.2 were not nearly

as sharp as they could be. It may be possible to generalize the construction in chapter 5 to

perhaps show that some diagonal operator D with associated sequence (λn) such that the set{
λ
n

: n ≥ 1
}

is not bounded is synthetic. It may also be worthwhile constructing polynomials
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which show that a diagonal operator with bounded eigenvalues is synthetic.
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