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1 Abstract

The mathematical foundation of on-leveling premium is explicitly stated. This is combined
with an appropriate set of assumptions to derive the formulae for on-leveling premium by
rate book (described within) and for using the Parallelogram Method. It is demonstrated
in an appendix that this foundation subsumes all works in the bibliography. It is observed
that rate book on-leveling has fewer assumptions than the Parallelogram Method and thus,
if database granularity permits, the Parallelogram Method should be abandoned.

2 Introduction

On-leveling premium is an important part of any ratemaking exercise. Typical references
(e.g. [2] p. 132, 142; [6] p. 73, 80) give three different methods: extension of exposures, the
Parallelogram Method, and aggregating policies based on applicable rate level (i.e. rate book
on-leveling). Of these, the first is the ideal. Extension of exposures is, by definition, the cor-
rect way to on-level. The challenge of the method is operational. It requires a well designed
database and maintenance of rating engines. Rate book on-leveling requires an assumption
involving the impact of rate changes and database queries of moderate complexity. Finally,
the Parallelogram Method, while requiring virtually nothing more beyond periodic reports
of earned premium and exposure, requires many assumptions in order to be tractable.

The shortcomings of actuarial literature with respect to on-leveling are fourfold. First,
there is a lack of explicitly stated assumptions. Some works (e.g. [2] p. 133; [3] p. 76;
[6], p. 73, 75) verbally state assumptions, but do not translate those assumptions into
equations. Consequently, there is no demonstration that the verbally stated assumptions
are sufficient to derive a formula with which to on-level one’s premium. This concern is not
merely theoretical. Such papers remark that there are times that the assumptions of the
Parallelogram Method do not hold. If this is true, which it undoubltably is at times, then
the mathematical formulations of the assumptions are needed so that they may be adjusted
to the situation and a new formula derived with which to on-leveled the premium.

Second, explicit formulae are often omitted. For instance, [2], [3], and [6] each illustrate
the Parallelogram Method (p. 133 - 141, p. 103 - 108, and p. 74 - 79 respectively) but never
explicitly state a formula. The best job is done by Ross ([5]) who has a general integral
formula which is then applied to various examples.

Third, there is an unacknowledged use of model functions. While Ross ([5]) explicitly
states that the derivative of his written exposure function is constant, it is not observed that
derivative of any written quantity function is 0 almost everywhere (this is demonstrated later
in this paper). Hence, when proving claims about a function with a non-zero derivative, it
is not true that these claims are being made for some class of well behaved written quantity
functions, rather they are being made for no written quantity functions at all. Consquently,
the work of Miller and Davis ([4]) and Bill ([1]), which use the work of Ross, have this same
problem.

Finally, there is a misplaced emphasis on exposure writing and growth. The works ([1],
[4], [5]) which sought to provide a theoretical basis for on-leveling devoted much of their
text to assumptions regarding the writing and subsequent earning of exposures. However,
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when on-leveling, one is not concerned with exposure. One is concerned with premium.
Assumptions about exposure are only useful insofar as they allow one to calculate various
quantities of premium.

The practical applications of this paper are two-fold. First, it provides an explicit record
in the actuarial literature for the mathematical foundation of on-leveling. Hence, one may
combine assumptions germane to one’s situation with this foundation to obtain appropriate
on-leveling formulae. Second, it demonstrates that rate book on-leveling has fewer assump-
tions than the Parallelogram Method. Hence, if one is able to determine in which period
each amount of premium is written, one may jetison the Parallelogram Method and obtain
a more precise estimate of on-leveled earned premium using rate book on-leveling. While a
great deal of mathematics and formulae follow, it is not necessary to examine it in order to
make use of this second application. In practice, while application of the extension of expo-
sures method may prove difficult due to differeing structures of the rate order of calculation
at different times, it is wholly conceivable that, due to the existence of databases containing
transactional data, rate book on-leveling may be used and the subsequent exposition be
interesting only to those with mathematical proclivities.

3 Aggregation Of Atomic Transactions

To begin, observe that in insurance, while one is often concerned with policies, policies are
not typically the most granular piece of data possessed by the insurance company. Consider
the following example.

Date Transaction
01/01/2016 Purchases annual auto policy for $600
04/01/2016 Adds second identical auto for $450
07/01/2016 Adds towinig to first auto for $25
10/01/2016 Cancels second auto’s coverage

Three additional changes occured to this policy besides initial writing: a car was added,
an endorsement, and a cancelation. The most granular data that a company possesses
encompasses transactions such as initial writing of the policy, endorsements to the policy,
and cancelation of the policy. The most granular data a company possesses shall, in this
paper, be known as atomic transactions. In this paper, such transactions will be the basis
of considerations of on-leveling premium.

In order to proceed, one must define the set of indicator functions. For all E ⊆ R define
IE : R → R such that IE(x) is 1 if x ∈ E and 0 otherwise. In this way IE indicates if x
is in the set E. For each transaction, one is concerned with the time of the transaction,
some amount of some quantity (e.g. exposure or premium), and some length of time (e.g.
the term length). Consider an atomic transaction at time t = t0 for amount a and term
length τ . Define the amount of written quantity for this transaction from the beginning of
the company, at time t = 0, through time t, denoted as w, by w(t) = aI([t0,∞))(t). A graph
of w for the first atomic transaction in the initial example (where time t = 1 corresponds to
01/01/2016) is below.
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Define the quantity in force for this transaction at time t, denoted by f , by f(t) = w(t) −
w(t− τ). A graph of f is below.

Finally, define the amount of earned quantity for this transaction through time t, denoted
as e, by e(t) = a

τ
(max(t− t0, 0)−max(t− (t0 + τ), 0)). A graph of e is below.

Observe that in the initial example there are four atomic transactions and thus four writ-
tem quantity, quantity in force, and earned quantity functions. If one subscripts functions
corresponding to the ith transaction with i, then the functions are given in the following
table.
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Written Quantity Quantity In Force Earned Quantity
w1(t) = 600 · I[1,∞)(t) f1(t) = 600 · I[1,2](t) e1(t) = 600(max(t− 1)−max(t− 2))
w2(t) = 450 · I[1.25,∞)(t) f2(t) = 450 · I[1.25,2](t) e2(t) = 450(max(t− 1.25)−max(t− 2))
w3(t) = 25 · I[1.5,∞)(t) f3(t) = 25 · I[1.5,2](t) e3(t) = 25(max(t− 1.5)−max(t− 2))

w4(t) = −150 · I[1.75,∞)(t) f4(t) = −150 · I[1.75,2](t) e4(t) = −150(max(t− 1.75)−max(t− 2))

Thus, the total written quantity for the policy is w1 + w2 + w3 + w4, the total quantity in
force is f1 + f2 + f3 + f4, and the total earned quantity is e1 + e2 + e3 + e4. The graphs of
these three functions are shown below.
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More generally, suppose that n atomic transactions have occured since the beginning of
the company and denote the kth specific term length, written quantity, quantity in force,
and earned quantity functions by τk, wk, fk, and ek respectively. Denote the company’s
written quantity, quantity in force, and earned quantity functions as w, f , and e respectively
and define them as follows

w =
n∑
k=1

wk, f =
n∑
k=1

fk, and e =
n∑
k=1

ek.

Since both w and f are linear combinations of indicator functions and each of those functions
has a zero time derivative almost everywhere (with respect to Lebesgue measure), then w
and f have a zero derivative almost everywhere. This observation becomes important when
deriving the Parallelogram Method.

In order to define the policy period quantity functions, fix a period [t1, t2]. Suppose
that there are n atomic transactions pertaining to policies originating in the period [t1, t2]
and let ŵk, f̂k, and êk be the respective written quantity, quantity in force, and earned
quantity functions pertaining to the kth atomic transaction. Similar to how the calendar
term functions were defined, denote the company’s [t1, t2] policy term written quantity,
quantity in force, and earned quantity functions as ŵ, f̂ , and ê respectively and define them
as follows

ŵ =
n∑
k=1

ŵk, f̂ =
n∑
k=1

f̂k, and ê =
n∑
k=1

êk.

4 On-Leveling

Define t0 = 0 and suppose that the company has implemented n rate changes at times
t1, t2, ..., tn where tk < tk+1 for 0 ≤ k ≤ n − 1. Let tn+1 = ∞ and ŵk, f̂k, and êk be the
policy period written quantity, quantity in force, and earned quantity functions respectively
for the period [tk, tk+1) for 0 ≤ k ≤ n. For 0 ≤ k ≤ n suppose that there are nk atomic
transactions pertaining to policies originating in the period [tk, tk+1) and for 1 ≤ j ≤ nk let
ŵk,j, f̂k,j, and êk,j be the respective written quantity, quantity in force, and earned quantity
functions. Since every atomic transaction is associated to a policy originating in exactly one
of these periods, observe that

w =
n∑
k=0

nk∑
j=1

ŵk,j =
n∑
k=0

ŵk,

f =
n∑
k=0

nk∑
j=1

f̂k,j =
n∑
k=0

f̂k,

and

e =
n∑
k=0

nk∑
j=1

êk,j =
n∑
k=0

êk.
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The above equations simply state that any calendar period amount of interest is the sum of
all policy period amounts of interest.

Fix a period [s1, s2) and consider the task of on-leveling the earned premium in it. Let
wp and ep be the written premium and earned premium functions and let w̃p and ẽp be the
written premium and earned premium as though the current rates had been in effect since
time t = 0. Let w̃p,k and ẽp,k be the policy period written premium and earned premium for
the period [tk, tk+1) for 0 ≤ k ≤ n as though the current rates had been in effect during each
of those terms. Hence, while ep(s2)− ep(s1) is what is recorded in the company’s data, the
desired, on-leveled quantity is ẽp(s2)− ẽp(s1). Equivalently, one desires the quantity

ẽp(s2)− ẽp(s1)
ep(s2)− ep(s1)

.

This quantity is often referred to as the on-level factor. If one can re-rate all of its old policies
using current rating rules then this number may be computed exactly. If one is unable to
do this, then one must make additional assumptions. The first two assumptions, while
not possessing names outside of this paper, shall henceforth be referred to as the Classical
On-Leveling Assumptions within this paper.

5 The Classical On-Leveling Assumptions

Knowledge of the relationship between êp,k and ẽp,k, and thus, the relationship between ŵp,k
and w̃p,k, is essential to calculating on-leveled premium. However, it is difficult in practice
to know that relationship. This is due to the fact that w̃p,k may be the result of numerous
changes involving reclassifications, rate capping, and other potentially complicated changes.
If one is to on-level one’s premium while avoiding the use of extension of exposures, one
must make some assumption about the relationship between ŵp,k and w̃p,k with tractable
consequences. To proceed, let we be the written exposure function, recognize that the
mathematical manifestation of the rate is dwp

dwe
, and that implementing a rate change is making

a change to dwp

dwe
. For example, suppose that premium is written at a constant rate of $1000

/ exposure. Mathematically, that is expressed as dwp

dwe
= 1000. If the company’s first rate

change takes place at time t = 1 and is a 3% rate change applied to all policies, this
would mean that premium is written at a constant rate of $1030 / exposure after t = 1.
Mathematically, this would mean that dwp

dwe
= 1030. Since all premium functions are merely

sums of atomic transaction functions, we must express the assumption in terms of the atomic
transaction written premium functions. To this end, for 0 ≤ k ≤ n and 1 ≤ j ≤ nk, let ŵp,k,j
and ŵe,k,j be the written premium and written exposure functions corresponding to the jth
atomic transaction associated to a policy originating in the kth policy period. Similarly, let
w̃p,k,j be the written premium function for the jth atomic transaction associated to a policy
originating in the kth policy period assuming the current rating structure was in effect. The
first classical on-leveling assumption may now be stated in the following way. For 0 ≤ k ≤ n
there is some ck such that

dw̃p,k,j
dŵe,k,j

= ck
dŵp,k,j
dŵe,k,j

(1)
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or, more concisely using the chain rule,

dw̃p,k,j
dŵp,k,j

=
dw̃p,k,j
dŵe,k,j

· dŵe,k,j
dŵp,k,j

= ck
dŵp,k,j
dŵe,k,j

· 1
dŵp,k,j

dŵe,k,j

= ck

Note that, by definition, cn = 1. Since w̃p,k,j(0) = ŵp,k,j(0) = 0, the first classical on-leveling
assumption implies that w̃p,k,j = ckŵp,k,j. Observe that this equation holds whether one
considers these functions as depending on time or written exposure. Hence, for 0 ≤ k ≤ n,
ẽk = ckêk,

ẽp(s2)− ẽp(s1) =
n∑
k=0

ck(êp,k(s2)− êp,k(s1)),

and the on-level factor is

1

ep(s2)− ep(s1)

n∑
k=0

ck(êp,k(s2)− êp,k(s1)) =
n∑
k=0

ck
êp,k(s2)− êp,k(s1)
ep(s2)− ep(s1)

.

The on-level factor is a weighted sum of the average of the policy period % increases (i.e.
ck) weighted by the amount of the [s1, s2) calendar period earned premium which came from
policy period [tk, tk+1). Thus, if for all calendar period earned premium, one is able to
determine the policy period with which that premium is associated, one can calculate the
above on-level factor. If one’s transaction processing database is sufficiently granular, then
a simple database query should be able to accomplish this. This observation is made in [6]
(p. 80). This formula and the next is all that is needed to on-level by rate book.

A natural question to arise is how to compute the cks. To provide a simple answer to
that, another definition must be given. For 0 ≤ i ≤ n, let iw̃p,k,j be the written premium
function for the jth atomic transaction associated to a policy originating in the kth policy
period assuming the rating structure for the time [ti, ti+1) was in effect. Observe that a
consequence of this definition is that nw̃p,k,j = w̃p,k,j and kw̃p,k,j = ŵp,k,j. The second classical
on-leveling assumption may now be made to help calculate the cks. For 0 ≤ k ≤ n− 1

d k+1w̃p,k,j
dŵe,k,j

=
ck
ck+1

dŵp,k,j
dŵe,k,j

. (2)

That is, k+1w̃p,k,j = (ck/ck+1)ŵp,k,j. This is assumption is helpful in the following way.
Often when implementing a rate change, a rate impact is calculated on the present book of
business. That is, the rates that are going to be in effect in the future are applied to the
current book of business and compared to current inforce premium. The above assumption
is that that rate impact is equal to ck/ck+1. For example, suppose that there have been two
rate changes, one at time t = 1 and another at time t = 2, and another one planned for time
t = 3. Suppose that the rate impact at time t = 1 was found to be 3% and at time t = 2 is
5%. Then assumption (2) and the fact that c3 = 1 by definition yields

c2 =
c2
c3
c3 = 1.05 · 1 = 1.05 and c1 =

c1
c2
c2 = 1.03 · 1.05.
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This assumption is merely a formalization of the usual reasoning used to calculate the cu-
mulative rate level index ([6], p. 76).

6 Parallelogram Method

If one is unable to on-level one’s premium using only the classical on-leveling assumptions,
then one must make additional simplifying assumptions. One such set of assumptions forms
the basis of The Parallelogram Method. Werner and Modlin in [6] on pages 73 and page 75
respectively state these assumptions in words as

1. “that premium is written evenly throughout the time period” and

2. “the distribution of policies written is uniform over time”.

Using our previous notation and the assumption that the number of policies written is
proportionate to the number of exposures written, the above may be stated mathematically
as

for 0 ≤ k ≤ n there is some rk such that
dŵp,k
dt

= rk on [tk, tk+1) and (3)

there is some r such that for 0 ≤ k ≤ n
dw̃p,k
dŵe,k

= r on [tk, tk+1) and (4)

there is some c such that for 0 ≤ k ≤ n
dŵe,k
dt

= c on [tk, tk+1). (5)

Assumption (4) states that the on-leveled rate per exposure for each of the time periods is the
same. This is the mathematical expression of the idea of a “steady mix of business”. While
not explicity mentioned in [6], this additional assumption is necessary for the Parallelogram
Method to work. An example illustrating the insufficiency of only assumptions (3) and (5)
is given later. From assumptions (4) and (5) it follows for 0 ≤ k ≤ n that

dw̃p,k
dt

=
dw̃p,k
dŵe,k

dŵe,k
dt

= rc

on [tk, tk+1) and 0 elsewhere. Thus, dw̃p

dt
=
∑n

k=0
dw̃p,k

dt
= rc. Hence, the phrase “that

premium is written evenly throughout the time period”, if applied to on-leveled premium as
well as recorded premium, is sufficient to obtain the results of the parallolgram method and
no assumption on the writing of exposures need be made.

It shall be now be established that the assumptions of the Parallelogram Method can be
used to derive the classical on-leveling assumptions. First, note that

dw̃p,k
dŵe,k

= r =
rc

rk
rk

1

c
=
rc

rk

dŵp,k
dt

dt

dŵe,k
=
rc

rk

dŵp,k
dŵe,k

.

This establishes (1). Second, since ck = rc
rk

as shown above, and
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dŵp,k
dŵe,k

=
dŵp,k
dt

dt

dŵe,k
=
rk
c
,

then rkck = rc and, by definition, for 0 ≤ k ≤ n− 1

d k+1w̃p,k
dêp,k

=
rk+1

c
=
rk+1

rk

rk
c

=
ck
ck+1

dŵp,k
dŵe,k

.

This establishes (2).
For the purposes of computation, observe that the above also implies ck = ck+1

( rk+1

c
÷ rk

c

)
for 0 ≤ k ≤ n−1. This means simply that ck is proportional to the rate impact of the (k+1)st
rate change. This, along with the fact that cn = 1, allows one to compute all cks.

It should be mentioned that assumptions (3) and (5) present two theoretical difficulties.
As mentioned in the section on atomic transactions, each of those functions has a zero
derivative almost everywhere, and thus the sum of those functions has a zero derivative
almost everywhere. Hence, if rk or c is anything other 0, then the functions mentioned
in the above assumptions are truly model written quantity functions, not actual written
quantity functions. This leads to the second theoretical difficulty. If the functions in the
assumptions above are model quantity functions and not tied to actual observed quantities
or atomic transactions, then an additional assumption must be made in order to derive an
earned quantity from a written quantity. This leads to the fourth Parallelogram Method
assumption.

There is some τ such that all atomic transactions have a term length of τ. (6)

Functionally, this means that no policies will be canceled and no endorsements will be added
or canceled. Using Assumption (6) and the notation from the first section, an equation
linking written quantity and earned quantity functions may be derived by observing

f(t) =
n∑
k=1

fk(t) =
n∑
k=1

wk(t)− wk(t− τk) =
n∑
k=1

wk(t)− wk(t− τ) = w(t)− w(t− τ)

and

e(t) =
n∑
k=1

ek(t) =
n∑
k=1

ak
τk

(max(t− tk, 0)−max(t− (tk + τk), 0)) =
n∑
k=1

∫ t

0

1

τk
(wk(s)− wk(s− τk))ds

=

∫ t

0

1

τ

n∑
k=1

wk(s)− wk(s− τ)ds =

∫ t

0

1

τ
(w(s)− w(s− τ))ds =

∫ t

0

1

τ
f(s)ds.

Based on the above equations, if w is a model written quantity function and τ is the term
length for all transactions, then define f by f(t) = w(t)−w(t−τ) and e by e(t) =

∫ t
0

1
τ
(w(t)−

w(t− τ))dt.
Using assumption (3) and the fact that ŵp,k(tk) = 0, formulae for policy term earned

premium may be developed. In particular,
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0 t ≤ tk
ŵp,k(t) = rk(t− tk) tk ≤ t ≤ tk+1.

rk(tk+1 − tk) tk+1 ≤ t
The premium in force and earned premium functions for the cases tk+1 − tk ≤ τ and τ ≤
tk+1 − tk are slightly different but may be compactly stated as below. Their development is
given in Appendix A. The general form of the premium in force is

0 t ≤ tk
rk(t− tk) tk ≤ t ≤ min(tk + τ, tk+1)

f̂p,k(t) = rk(min(tk+1, t)−max(tk, t− τ)) min(tk + τ, tk+1) ≤ t ≤ max(tk + τ, tk+1),
rk(tk+1 + τ − t) max(tk + τ, tk+1) ≤ t ≤ tk+1 + τ
0 tk+1 + τ ≤ t

and the [tk, tk+1] policy term earned premium through time t is
0 t ≤ tk
.5 rk

τ
(t− tk)2 tk ≤ t ≤ min(tk + τ, tk+1)

.5 rk
τ

min(tk+1 − tk, τ)2 min(tk + τ, tk+1) ≤ t ≤ max(tk + τ, tk+1)
+ rk

τ
min(tk+1 − tk, τ)

·(t− (min(tk+1 − tk, τ) + tk))
êp,k(t) = rk

τ
min(tk+1 − tk, τ)2 max(tk + τ, tk+1) ≤ t ≤ tk+1 + τ

+ rk
τ

min(tk+1 − tk, τ)
·(max(tk+1 − tk, τ)−min(tk+1 − tk, τ))
−.5 rk

τ
(tk+1 + τ − t)2

rk
τ

min(tk+1 − tk, τ)2 tk+1 + τ ≤ t.
+ rk

τ
min(tk+1 − tk, τ)

·(max(tk+1 − tk, τ)−min(tk+1 − tk, τ))

7 Parallelogram Examples

7.1 Example 1

For an example, consider the “simple Example” given in [6] starting on p.72. In this example
the policy term is annual (i.e. that is τ = 1).

Rate Level Group Effective Date Overall Average Rate Change
1 Initial −−
2 07/01/2010 5%
3 01/01/2011 10%
4 04/01/2012 −1%

The task is to on-level calendar year 2011 earned premium. Suppose that time t = 0
corresponds to 01/01/2010. Let ŵp,0, ŵp,1, ŵp,2, and ŵp,3 be the policy term written premium
functions corresponding to the terms [0, .5], [.5, 1], [1, 2.25], and [2.25,∞) respectively and let
êp,0, êp,1, êp,2, and êp,3 be the corresponding policy term earned premium functions. Based
on the table of rate changes, we have that
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c0 = 1.05 · 1.1 · .99

c1 = 1.1 · .99

c2 = .99

c3 = 1.

Since we wish to on-level the 2011 calendar year, we calculate

êp,0(2)− êp,0(1) =
1

1
(r0 · .52 + r0 · .5(1− .5))− 1

1
(.5r0 · .52 + r0 · .5(1− .5)) = .5r0 − .375r0 = .125r0

êp,1(2)− êp,1(1) =
1

1
(r1 · .52 + r1 · .5(1− .5))− 1

1
.5r1(1− .5)2 = .5r1 − .125r1 = .375r1 = .375 · 1.05r0

êp,2(2)− êp,2(1) =
1

1
.5r2 · 12 − 1

1
· 0 = .5r2 = .5 · 1.05 · 1.1r0

êp,3(2)− êp,3(1) = 0− 0 = 0.

Let ẽp(t) be the earned premium function assuming that all premium has been written at
current rates. Then

ẽp(2)− ẽp(1) =
1

1
(.5r3 · 1 + r3 · 1(2− 1))− 1

1
· .5r3 · 12 = r3 = 1.05 · 1.1 · .99r0.

Hence, the on-level factor for calendar year 2011 is

1.05 · 1.1 · .99r0
.125r0 + .375 · 1.05r0 + .5 · 1.05 · 1.1r0

≈ 1.0431.

7.2 Example 2

The second example is like the first example except that the policy term is 6 months. (i.e.
that is τ = .5). Using the same notation as before, we calculate

êp,0(2)− êp,0(1) =
1

.5
(r0 · .52 + r0 · .5 · 0)− 1

.5
(r0 · .52 + r0 · .5 · 0) = 0

êp,1(2)− êp,1(1) =
1

.5
(r1 · .52 + r1 · .5 · 0)− 1

.5
(.5r1 · .52) = .25r1 = .25 · 1.05r0

êp,2(2)− êp,2(1) =
1

.5
(.5r2 · .52 + r2 · .5 · (2− (.5 + 1)))− 1

.5
0 = .75r2 = .75 · 1.05 · 1.1r0

êp,3(2)− êp,3(1) =
1

.5
0− 1

.5
0 = 0.

Let ẽp(t) be the earned premium function assuming that all premium has been written at
current rates. Then

ẽp(2)− ẽp(1) =
1

.5
(.5r3 · .52+r3 · .5(2− .5))− 1

.5
(.5r3 · .52+r3 · .5(1− .5)) = r3 = 1.05 ·1.1 · .99r0.
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Hence, the on-level factor for calendar year 2011 is

1.05 · 1.1 · .99r0
.25 · 1.05r0 + .75 · 1.05 · 1.1r0

≈ 1.0130.

7.3 Example 3

In this example, we demonstrate the necessity of assumption (4) in the Parallelogram
Method. To this end, suppose that policies are annual (e.g. τ = 1), there was a single
rate change on 01/01/2011. Suppose that time t = 0 corresponds to 01/01/2010. Let ŵp,0
and ŵp,1 be the policy term written premium functions corresponding to the terms [0, 1] and
[1, 2] respectively and let êp,0 and êp,1 be the corresponding policy term earned premium
functions. Assume further that

dŵe,1
dt

=
dŵe,2
dt

= 1000

dŵp,1
dŵe,1

= 100

dw̃p,1
dŵe,1

= 105

dw̃p,2
dŵe,2

=
dŵp,2
dŵe,1

= 110.

That is, 1000 exposures are being written each year. In 2010, the written premium per
exposure is $100 and is $105 at current rate level. In 2011, the written premium per exposure
is $110. Hence,

êp,1(2)− êp,1(1) = 100 · 1000 · 12 + 100 · 1000 · 1 · (1− 1)− .5 · 100 · 1000 · (1 + 1− 2)− .5 · 100 · 1000 · 12

= 50000

êp,2(2)− êp,2(1) = .5 · 110 · 1000 · (2− 1)2 − 0 = 55000.

Let ẽp(t) be the earned premium function assuming that all premium has been written at
current rates. Then

ẽp(2)− ẽp(1) = (ẽp,1(2)− ẽp,1(1)) + (ẽp,2(2)− ẽp,2(1))

= (105 · 1000 · 12 + 105 · 1000 · 1 · (1− 1)− .5 · 105 · 1000 · (1 + 1− 2)− .5 · 105 · 1000 · 12)

+ 55000 = 52500 + 55000 = 107, 500.

Hence, the on-level factor for calendar year 2011 is

107500

105000
≈ 1.0238 6= 1.0244 ≈=

1.05

.5 + .5 · 1.05
.

Observe that the factor does not match the form typically prescribed by the Parallelogram
Method.
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8 Conclusion

On-leveling premium is merely an arithmetic problem. The impediment to the extension
of exposures is technology and data driven. Thus, the pace of technology and availability
of data will soon make papers like this obselete. Until then, if one is unable to apply the
extension of exposures technique, then one must make some assumptions. The most popular
set of assumptions, as indicated by a review of the literature, are those which give rise to the
Parallelogram Method. The popularity of this method is unsurprising given that it originated
in a time when there was not access to fast databases and that it can be applied using periodic
reports of earned premium and exposure. However, this is a different time. Today, even if one
does not have all of the data or the rating engines to use the extension of exposures, one can
certainly, with a few database queries determine under what rate book every piece of earned
premium was written. Hence, one may, with only a modicum of effort, on-level premium by
rate book. Moreover, as shown by this paper, the assumptions governing the Parallelogram
Method are much stronger than those needed to on-level by rate book. Therefore, it is the
opinion of this author that the reader experiment by comparing premium on-leveled by the
three different methods and determine whether on-leveling by the Parallelogram Method or
by rate book is closer to the correct answer of on-leveling by extension of exposures. The
importance of this answer lies in its ability to allow one to price more accurately. The more
accurate one’s on-leveling procedure, the less one’s premium trend calculations must account
for one’s on-leveling inaccuracies, and the more precise one’s projection of premium will be.

9 Appendix - Derivation Of Parallelgram Method

In order to obtain the general expression of the premium in force function for the Parallelo-
gram Method, first consider the case tk+1 − tk ≤ τ . In this case,

0 t ≤ tk
rk(t− tk) tk ≤ t ≤ tk+1

f̂p,k(t) = rk(tk+1 − tk) tk+1 ≤ t ≤ tk + τ
rk(tk+1 + τ − t) tk + τ ≤ t ≤ tk+1 + τ
0 tk+1 + τ ≤ t

Next, consider the case τ ≤ tk+1 − tk. In this case,
0 t ≤ tk
rk(t− tk) tk ≤ t ≤ tk + τ

f̂p,k(t) = rkτ tk + τ ≤ t ≤ tk+1

rk(tk+1 + τ − t) tk+1 ≤ t ≤ tk+1 + τ
0 tk+1 + τ ≤ t

Combining the above results yields the general form of the premium in force function as
0 t ≤ tk
rk(t− tk) tk ≤ t ≤ min(tk + τ, tk+1)

f̂p,k(t) = rk(min(tk+1, t)−max(tk, t− τ)) min(tk + τ, tk+1) ≤ t ≤ max(tk + τ, tk+1).
rk(tk+1 + τ − t) max(tk + τ, tk+1) ≤ t ≤ tk+1 + τ
0 tk+1 + τ ≤ t

Similarly, the derivation of the general form of the earned premium function must be split
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into two cases. In the first case, tk+1 − tk ≤ τ and min(tk + τ, tk+1) = tk+1. Hence,

∫ t

0

1

τ
f̂p,k(s)ds =

∫ t

0

0 = 0 for t ≤ tk,∫ t

0

1

τ
f̂p,k(s)ds =

∫ tk

0

0 +

∫ t

tk

rk
τ

(t− tk) = .5
rk
τ

(t− tk)2 for tk ≤ t ≤ min(tk + τ, tk+1),∫ t

0

1

τ
f̂p,k(s)ds =

∫ min(tk+τ,tk+1)

0

1

τ
f̂p,k(s)ds+

∫ t

min(tk+τ,tk+1)

rk
τ

(min(tk+1, s)−max(tk, s− τ))ds

= .5
rk
τ

(tk+1 − tk)2 +

∫ t

tk+1

rk
τ

(tk+1 − tk)ds = .5
rk
τ

(tk+1 − tk)2 +
rk
τ

(tk+1 − tk)(t− tk+1)

= .5
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(t− (min(tk+1 − tk, τ) + tk))

for min(tk + τ, tk+1) ≤ t ≤ max(tk + τ, tk+1),∫ t

0

1

τ
f̂p,k(s)ds =

∫ max(tk+τ,tk+1)

0

1

τ
f̂p,k(s)ds+

∫ t

max(tk+τ,tk+1)

1

τ
f̂p,k(s)ds

= .5
rk
τ

(tk+1 − tk)2 +
rk
τ

(tk+1 − tk)(tk + τ − tk+1) +

∫ t

tk+τ

rk
τ

(tk+1 + τ − s)ds

= .5
rk
τ

(tk+1 − tk)2 +
rk
τ

(tk+1 − tk)(tk + τ − tk+1) + .5
rk
τ

((tk+1 − tk)2 − (tk+1 + τ − t)2)

=
rk
τ

(tk+1 − tk)2 +
rk
τ

(tk+1 − tk)(tk + τ − tk+1)− .5
rk
τ

(tk+1 + τ − t)2

=
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(max(tk+1 − tk, τ)−min(tk+1 − tk, τ))− .5rk
τ

(tk+1 + τ − t)2

for max(tk + τ, tk+1) ≤ t ≤ tk+1 + τ, and∫ t

0

1

τ
f̂p,k(s)ds =

∫ tk+1+τ

0

1

τ
f̂p,k(s)ds+

∫ t

tk+1+τ

1

τ
f̂p,k(s)ds

=
rk
τ

(tk+1 − tk)2 +
rk
τ

(tk+1 − tk)(max(tk+1 − tk, τ)−min(tk+1 − tk, τ)) +

∫ t

tk+1+τ

0ds

=
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(max(tk+1 − tk, τ)−min(tk+1 − tk, τ)) for tk+1 ≤ t.

In the second case, τ ≤ tk+1 − tk and min(tk + τ, tk+1) = tk + τ . Hence,
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∫ t

0

1

τ
f̂p,k(s)ds =

∫ t

0

0 = 0 for t ≤ tk,∫ t

0

1

τ
f̂p,k(s)ds =

∫ tk

0

0 +

∫ t

tk

rk
τ

(t− tk) = .5
rk
τ

(t− tk)2 for tk ≤ t ≤ min(tk + τ, tk+1),∫ t

0

1

τ
f̂p,k(s)ds =

∫ min(tk+τ,tk+1)

0

1

τ
f̂p,k(s)ds+

∫ t

min(tk+τ,tk+1)

rk
τ

(min(tk+1, s)−max(tk, s− τ))ds

= .5
rk
τ
τ 2 +

∫ t

tk+τ

rk
τ
τds = .5

rk
τ
τ 2 +

rk
τ
τ(t− (tk + τ))

= .5
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(t− (min(tk+1 − tk, τ) + tk))

for min(tk + τ, tk+1) ≤ t ≤ max(tk + τ, tk+1),∫ t

0

1

τ
f̂p,k(s)ds =

∫ max(tk+τ,tk+1)

0

1

τ
f̂p,k(s)ds+

∫ t

max(tk+τ,tk+1)

1

τ
f̂p,k(s)ds

= .5
rk
τ
τ 2 +

rk
τ
τ(tk+1 − (tk + τ)) +

∫ t

tk+1

rk
τ

(tk+1 + τ − s)ds

= .5
rk
τ
τ 2 +

rk
τ
τ(tk+1 − (tk + τ)) + .5

rk
τ

(τ 2 − (tk+1 + τ − t)2)

=
rk
τ
τ 2 +

rk
τ
τ(tk+1 − (tk + τ))− .5rk

τ
(tk+1 + τ − t)2

=
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(max(tk+1 − tk, τ)−min(tk+1 − tk, τ))− .5rk
τ

(tk+1 + τ − t)2

for max(tk + τ, tk+1) ≤ t ≤ tk+1 + τ, and∫ t

0

1

τ
f̂p,k(s)ds =

∫ tk+1+τ

0

1

τ
f̂p,k(s)ds+

∫ t

tk+1+τ

1

τ
f̂p,k(s)ds

=
rk
τ
τ 2 +

rk
τ
τ(max(tk+1 − tk, τ)−min(tk+1 − tk, τ)) +

∫ t

tk+1+τ

0ds

=
rk
τ

min(tk+1 − tk, τ)2 +
rk
τ

min(tk+1 − tk, τ)(max(tk+1 − tk, τ)−min(tk+1 − tk, τ)) for tk+1 ≤ t.

10 Appendix - Reconciliation To Previous Papers

There are three main papers which seek to give a systematic treatment to on-leveling pre-
mium. It should be noted that the expressions given in this paper, under a change of notation,
yield the same results as those papers. Also, these papers are considering model written ex-
posure functions instead of those related to actual atomic transactions. The first paper, [5],
is that of Ross from 1975. On p. 52 in [5], Ross presents a formula, denoted as EE(x0, x1),
for the amount of exposures earned between time x0 and x1, denotes time and policy term
length using the letters x and t respectively, and writes “Let the function f(x) stand for the
rate of exposure writing at time x”. In order to see the equivalence of formulae, note that
the set of points in the plane which describe the region {(x, s) : x0 ≤ x ≤ x1, x− τ ≤ s ≤ x}
can also be described by
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x0 ≤ s ≤ x0 x0 ≤ x ≤ s+ τ
x0 ≤ s ≤ x1 − τ s ≤ x ≤ s+ τ
x1 − τ ≤ s ≤ x1 s ≤ x ≤ x1.

Using his notation, the equivalence between his formula the one developed in this paper is
as follows:

ee(x1)− ee(x0) =
1

τ

∫ x1

x0

fe(x)dx =
1

τ

∫ x1

x0

we(x)− we(x− τ)dx =
1

τ

∫ x1

x0

∫ x

x−τ
f(s)dsdx

=
1

τ

(∫ x0

x0−τ

∫ s+t

x0

f(s)dxds+

∫ x1−τ

x0

∫ s+t

s

f(s)dxds+

∫ x1

x1−τ

∫ x1

s

f(s)dxds

)
=

∫ x0

x0−τ

s+ τ − x0
τ

f(s)ds+

∫ x1−τ

x0

f(s)ds+

∫ x1

x1−τ

x1 − s
τ

f(s)ds = EE(x0, x1).

The second paper, [4], is that of Miller and Davis from 1976. On p. 121 in [4], Miller and
Davis, giving a geometric interpretation to the work of Ross, derived a formula equivalent to
his. They used notation similar to his except that they denoted the term length as k. Using
their notation, equivalence between their formula and the one developed in this paper is as
follows:

ee(x1)− ee(x0) =
1

τ

∫ x1

x0

fe(x)dx =
1

τ

∫ x1

x0

we(x)− we(x− τ)dx =
1

τ

∫ x1

x0

∫ x

x−τ
f(s)dsdx

=

∫ x1

x0

∫ x−τ

x

−1

τ
f(s)dsdx =

∫ x1

x0

∫ 1

0

f(x− τs)dsdx = EE(x0, x1).

The third paper, [1], is that of Bill from 1989. Bill’s work is an application of the formulae
of Ross (p. 207). Hence, the work of Bill can also be derived from the formulae presented
in this paper.

Finally, since the formulae implicitly referenced in [2], [3], and [6] are stated explicitly
and developed from a more general set of equations, the claim set forth in the abstract, that
this paper subsumes all works in the bibliography, is established.
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