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ABSTRACT

Fix a prime p and consider the vector space of dimension p2 over the field of p elements.

We shall define two nilpotent linear transformations on this vector space. We are

interested in enumerating and computing the subspaces which are simultaneously

invariant under both transformations. We shall do this completely for the cases

p = 2 and p = 3. The case p = 5 is computationally much larger and we have only

partially completed it in this thesis.
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CHAPTER I

INTRODUCTION

For the purposes of this thesis, we shall fix a prime p and consider the vector space

of dimension p2 over the field of p elements. Further, we shall define two nilpotent

linear transformations on this vector space. The main point of interest of this thesis is

enumerating and computing the subspaces which are simultaneously invariant under

both transformations. We shall do this completely for the cases p = 2 and p = 3.

The case when p = 5 is computationally much larger and we have only partially

completed it. Finally, as a contextual issue, we should note that the problem that

is presented in this thesis is a reformulation of a group-theoretic problem involving

iterated wreath products.

Fix a prime p. Define Zp = Z/pZ = {0, . . . , p− 1} to be the ring of integers

modulo p. Note that Zp is a field. Define the set U = { (u1, u2) | u1, u2 ∈ Zp},

which we call the point space. Define the function space F = { f | f : U → Zp}

to be the set of all functions mapping U into Zp. On F one has the operations of

pointwise addition of functions and pointwise scalar multiplication of a function by an

element of Zp. For each point u = (u1, u2) ∈ U , we define the characteristic function
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fu = fu1,u2 ∈ F by the rule

fu1,u2(v1, v2) =





1 if (v1, v2) = (u1, u2)

0 if (v1, v2) 6= (u1, u2).

It is clear that for each function f ∈ F we have

f(v1, v2) =
∑

(u1,u2)∈U
f(u1, u2)fu1,u2(v1, v2).

Thus, our function space F is a vector space of dimension p2 over the field Zp. The

following definition will give us the linear transformations which will be the focus of

the rest of the thesis.

DEFINITION 1: Let B = { fu1,u2 | (u1, u2) ∈ U} be the basis of characteristic

functions for the function space F . Fix a function f ∈ F and for each (u1, u2) ∈ U

let αu1,u2 = f(u1, u2). Then we define the partial derivative of f with respect to

the first component, denoted ∂1(f), to be the function
∑

u1,u2
βu1,u2fu1,u2 where

βu1,u2 =





αu1+1,u2 if u1 6= p− 1

0 if u1 = p− 1.

Similarly, we define the partial derivative of f with respect to the second

component, denoted ∂2(f), to be the function
∑

u1,u2
βu1,u2fu1,u2 where

βu1,u2 =





αu1,u2+1 if u2 6= p− 1

0 if u2 = p− 1.
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We now illustrate the above definition as follows. As noted earlier, each

function f ∈ F has the form

f = α0,0f0,0 + α0,1f0,1 + . . . + α0,p−1f0,p−1

+ α1,0f1,0 + α1,1f1,1 + . . . + α1,p−1f1,p−1

+ α2,0f2,0 + α2,1f2,1 + . . . + α2,p−1f2,p−1

...
...

...
...

...
. . .

...
...

+ αp−1,0fp−1,0 + αp−1,1fp−1,1 + . . . + αp−1,p−1fp−1,p−1

for unique scalars α0,0, α0,1, . . . , αp−1,p−2, αp−1,p−1 ∈ Zp. Then we obtain

∂1(f) = α1,0f0,0 + α1,1f0,1 + . . . + α1,p−1f0,p−1

+ α2,0f1,0 + α2,1f1,1 + . . . + α2,p−1f1,p−1

+ α3,0f2,0 + α3,1f2,1 + . . . + α3,p−1f2,p−1

...
...

...
...

. . .
...

...

+ αp−1,0fp−2,0 + αp−1,1fp−2,1 + . . . + αp−1,p−1fp−2,p−1

+ 0fp−1,0 + 0fp−1,1 + . . . + 0fp−1,p−1

.

The reader should keep in mind that due to the above illustration, we can loosely think

of the first derivative operator as shifting the coefficients of a function’s representation

up. Also, we obtain

∂2(f) = α0,1f0,0 + . . . + α0,p−1f0,p−2 + 0f0,p−1

+ α1,1f1,0 + . . . + α1,p−1f1,p−2 + 0f1,p−1

+ α2,1f2,0 + . . . + α2,p−1f2,p−2 + 0f2,p−1

...
...

. . .
...

...
...

...

+ αp−1,1fp−1,0 + . . . + αp−1,p−1fp−1,p−2 + 0fp−1,p−1

.
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In a similar way to the first derivative, one can think of the second derivative operator

shifting the coefficients of a function’s representation to the left. The reader should

note that each of the linear transformations ∂1, ∂2 is nilpotent since the composition

∂p
i = ∂i ◦ ∂i ◦ . . . ◦ ∂i is the zero transformation for each i ∈ {1, 2}. We shall use

the notions of partial derivatives and their respective invariant subspaces for the next

important definition.

DEFINITION 2: Let V be a subspace of the function space F . We define V to be

doubly-invariant if for each function f ∈ V , we have ∂1(f) ∈ V and ∂2(f) ∈ V .

We remind the reader that the ultimate goal is to enumerate and identify

all of the doubly-invariant subspaces of F . In Chapters II and III we will describe

a systematic method to make this task manageable as well as ensure that we count

each subspace exactly once. In Chapters IV, V, and VI, we will apply this method

to the cases p = 2, p = 3, and p = 5 respectively.
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CHAPTER II

HOW TO COMPUTE DOUBLY-INVARIANT SPACES

The first observation we have while working towards our goal is that the function

space F is isomorphic to the vector space consisting of all p× p matrices with entries

from the field Zp, which we denote as Mp×p(Zp). For brevity, we shall denote Mp×p(Zp)

by M. In particular, we shall use the natural isomorphism

f = α0,0f0,0 + . . . + α0,p−1f0,p−1

+ α1,0f1,0 + . . . + α1,p−1f1,p−1

+ α2,0f2,0 + . . . + α2,p−1f2,p−1

...
...

...
. . .

...
...

+ αp−1,0fp−1,0 + . . . + αp−1,p−1fp−1,p−1

7→




α0,0 . . . α0,p−1

α1,0 . . . α1,p−1

α2,0 . . . α2,p−1

...
. . .

...

αp−1,0 . . . αp−1,p−1




.

We shall index the entries in our matrices using points u = (u1, u2) from our

point space U . We mention this so that the reader may note that the indices of our

entries start from 0. Also, instead of labelling our points using letters like u1 and u2,

we shall use the more familiar notation of indices which use i and j. From the natural

isomorphism it seems natural to make the next definition concerning matrices.
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DEFINITION 3: Let m ∈M and write

m =




α0,0 α0,1 . . . α0,p−1

α1,0 α1,1 . . . α1,p−1

α2,0 α2,1 . . . α2,p−1

...
...

. . .
...

αp−1,0 αp−1,1 . . . αp−1,p−1




Then we define the partial of m with respect to the first axis, denoted as ∂1(m),

and the partial of m with respect to the second axis, denoted as ∂2(m), by the

following:

∂1(m) =




α1,0 α1,1 α1,2 . . . α1,p−2 α1,p−1

α2,0 α2,1 α2,2 . . . α2,p−2 α2,p−1

α3,0 α3,1 α3,2 . . . α3,p−2 α3,p−1

...
...

...
. . .

...
...

αp−1,0 αp−1,1 αp−1,2 . . . αp−1,p−2 αp−1,p−1

0 0 0 . . . 0 0




,

∂2(m) =




α0,1 α0,2 α0,3 . . . α0,p−1 0

α1,1 α1,2 α1,3 . . . α1,p−1 0

α2,1 α2,2 α2,3 . . . α2,p−1 0

...
...

...
. . .

...
...

αp−2,1 αp−2,2 αp−2,3 . . . αp−2,p−1 0

αp−1,1 αp−1,2 αp−1,3 . . . αp−1,p−1 0




.
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It is clear that if f 7→ m, then ∂1(f) 7→ ∂1(m) and ∂2(f) 7→ ∂2(m). Also, like

its function space counterpart, ∂i is nilpotent since ∂p
i is the zero transformation for

each i ∈ {1, 2}. We use the above definition to make another natural definition.

DEFINITION 4: A subspace V of M is said to be doubly-invariant if for each

m ∈ V , we have ∂1(m) ∈ V and ∂2(m) ∈ V . Further we define the set

V = {V | V is a doubly-invariant subspace of M }.

Thus, we have cast the problem of finding the doubly-invariant subspaces

of F to the problem of finding the doubly-invariant subspaces of M. In order to

accomplish such a task, we will need a reasonable way to divide the different doubly-

invariant subspaces into disjoint subsets. We will need to develop some more concepts

in order to do this.

DEFINITION 5: A mapping α : U → {0, 1} is a pattern if it satisfies the following

conditions:

1. For each fixed i0 ∈ {0, . . . , p − 1}, the mapping α(i0, j) is nonincreasing in j.

In other words j1 < j2 implies α(i0, j1) ≥ α(i0, j2).

2. For each fixed j0 ∈ {0, . . . , p− 1}, the mapping α(i, j0) is nonincreasing in i. In

other words i1 < i2 implies α(i1, j0) ≥ α(i2, j0).

We shall denote the set of all patterns by P .

Note that we may use matrices in a very natural way to represent patterns.

For instance, take p = 3 and define the pattern α by α(0, 0) = α(1, 0) = α(0, 1) = 1

7



and α(i, j) = 0 for all other points (i, j) ∈ U . We can now represent α in the following

way:

α =




1 1 0

1 0 0

0 0 0




.

However, we will be using matrices in this thesis for another purpose. As such, if

we represent patterns using matrices, confusion might arise. Thus, we adopt the

following notational convention. If α ∈ P and α(i, j) = 1 we place a dot • in the

(i, j)-entry of the matrix used to represent α. However, if α(i, j) = 0, we will still

place a zero in the (i, j)-entry of the matrix. Using the above example, we represent

α as follows:

α =




• • 0

• 0 0

0 0 0




.

With this convention in hand, we are now able to distinguish between matrices in M

and patterns in P . The patterns will be used to decompose the set V into a union

of disjoint subsets which can then be treated individually. First, we shall define a

natural way to associate each pattern to a doubly-invariant subspace of M.

DEFINITION 6: For each pattern α ∈ P , we define the set E(α) = { ei,j | α(i, j) =

1}, where ei,j is the matrix whose (i, j)-entry is 1 and all of whose other entries are

zeros. Using E(α) we define the subspace V (α) = 〈E(α)〉 of M to be the coefficient

pattern subspace for the pattern α.

8



In order to partition the doubly-invariant subspaces, we will need the notion

of one pattern “containing” another. To this end, we define the following partial

ordering relation.

DEFINITION 7: Given any patterns α, β ∈ P , we write α ¹ β if α(i, j) ≤ β(i, j) for

each point (i, j) ∈ U . If α ¹ β and α 6= β, then we write α ≺ β. If α � β and β � α,

then we say that α and β are not comparable.

In terms of coefficient pattern subgroups, it is clear that α ¹ β if and only if

V (α) ⊆ V (β). This leads us to make a very important definition which will allow us

to express the set of doubly-invariant subspaces of matrices as a disjoint union.

DEFINITION 8: Let α ∈ P be a pattern and V a doubly-invariant subspace of M.

We define α to be maximal in V if

1. The coefficient subspace for α, namely V (α), is contained in V . In symbols,

V (α) ⊆ V .

2. For each β ∈ P such that α ≺ β we have V (β) * V .

Further, for each α ∈ P we define the set

V(α) = {V | V ∈ V and α is maximal in V }.

Before we proceed, let us demonstrate that maximality is unique. This will

be of use in the theorem that follows.

9



LEMMA 9: Suppose that for a doubly-invariant subspace V there exist patterns

α, β ∈ P such that α and β are both maximal in V . Then α = β.

Proof. There are two main subcases to prove the result. Namely, either α and β

are comparable or they are not. Suppose that α and β are comparable. Then, by

definition 7, if α ≺ β, then β would be maximal in V and α would not. Similarly,

if β ≺ α, then α would be maximal in V and β would not. Therefore, α = β. Now

suppose that α and β are not comparable. We shall derive a contradiction. Define

the function γ by the rule γ(i, j) = max{α(i, j), β(i, j)} for each (i, j) ∈ U . We shall

demonstrate that γ is a pattern. Fix an i0 ∈ {0, . . . , p−1} and suppose that γ(i0, j) =

1. Then either α(i0, j) = 1 or β(i0, j) = 1. Without loss of generality, suppose that

α(i0, j) = 1. By the definition of pattern, this would mean that α(i0, l) = 1 = γ(i0, l)

for each l ∈ {0, . . . , j}. Hence, γ is nonincreasing in j. Similarly, we can show that

for a fixed j0 ∈ {0, . . . , p−1}, γ is nonincreasing in i. Therefore, γ is a pattern. Also,

by construction α(i, j), β(i, j) ≤ γ(i, j) for each (i, j) ∈ U . Hence, α ¹ γ and β ¹ γ.

Since V (α), V (β) ⊆ V , it is clear that V (γ) ⊆ V . Since α is maximal in V , it must

be the case that α = γ. Similarly, β = γ. Hence, α = β. This is a contradiction since

we assumed that α and β were not comparable.

Now we have all the necessary machinery in place to prove that the set of

doubly-invariant subspaces of matrices can be written as a disjoint union.

THEOREM 10: V =
⋃

α∈P V(α) and this is a disjoint union.

Proof. Let V ∈ V . We must demonstrate that there exists a pattern α ∈ P such

10



that V ∈ V(α). To this end, we define the set PV = {α ∈ P | V (α) ⊆ V }. Consider

the pattern α0 which is defined by α0(i, j) = 0 for all (i, j) ∈ U . Clearly, α0 ∈ PV

which implies that the set PV is non-empty. Since there are only a finite number of

patterns in PV (indeed the cardinality of P is 2p2
by a simple counting argument),

one can pick a maximal pattern under the partial ordering. By Lemma 9, we know

this pattern is unique.

Now we must demonstrate that the union is disjoint. Suppose that there

exists V ∈ V and patterns α, β ∈ P such that V ∈ V(α) ∩ V(β). Then both α and β

are maximal in V which implies that α = β by Lemma 9.

Before we proceed to another intuitive result pertaining to V(α), we need an

easy result which will prove useful in some of the results to follow.

LEMMA 11: Fix a point (i, j) ∈ U and let B = {m(1), . . . , m(n)} be a set of matrices

such that m
(k)
i,j = 0 for each k ∈ {1, . . . , n}. Then if m ∈ span(B) we have mi,j = 0.

Proof. Since m ∈ span(B), we have that m =
∑n

k=1 αkm
(k) for some α1, . . . , αn ∈ Zp.

This gives us that mi,j =
∑n

k=1 αk ·m(k)
i,j = 0.

We may now prove an intuitive and useful result which will give us our starting

point for determining each of the sets V(α).

LEMMA 12: Let α ∈ P be a pattern. Then V (α) ∈ V(α).

Proof. We must demonstrate that V (α) is doubly-invariant and that α is maximal

in V (α). We shall first prove that V (α) is doubly-invariant. In order to accomplish

this we must show that V (α) is invariant under both linear transformations ∂1, ∂2.

11



We shall show that V (α) is invariant under ∂1. The argument for ∂2 is similar.

Keep in mind that showing that a subspace of a vector space is invariant under some

transformation is equivalent to showing that the basis vectors are mapped back into

the vector space. In particular, our set of basis vectors is E(α) = { ei,j | α(i, j) = 1}.

Let ei,j ∈ E(α). If i = 0, then ∂1(ei,j) = ∂1(e0,j) = 0m where 0m is the zero

matrix. Clearly, 0m ∈ V (α). If i 6= 0, then ∂1(ei,j) = ei−1,j. Thus, in order to

complete this part of the proof, we must show that ei−1,j ∈ V (α). Recall that if

ei,j ∈ E(α), then α(i, j) = 1. However, by the definition of pattern, we then have

that α(k, j) = 1 for each k ∈ {0, . . . , i}. In particular α(i − 1, j) = 1. This implies

that ei−1,j ∈ E(α) ⊆ V (α). Hence, V (α) is invariant under the linear transformation

∂1.

Now we shall demonstrate that α is maximal in V (α). Clearly, part 1 of

Definition 8 is satisfied. To prove that part 2 of the definition is satisfied, we shall

argue by contradiction. Suppose to the contrary that there exists a pattern β ∈ P

such that α ≺ β and that V (β) ⊆ V (α). However, this means that β ¹ α. This is a

contradiction. Therefore, α is maximal in V (α).

Now that we have our foundation point for investigating the subspaces in

V(α), we can proceed to our method for counting and computing the subspaces of

V(α). Before proceeding, we shall need a definition. The terminology is inspired from

the group theory context from which this problem arises.
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DEFINITION 13: Fix a subspace V ∈ V . For each i ∈ {1, 2}, we define the ith

centralizer of V to be the set Ci(V ) consisting of all matrices whose derivatives

with respect to the ith axis are in V . That is, Ci(V ) = ∂−1
i (V ). Further, we define

the centralizer of V to be the set

C(V ) = ∂−1
1 (V ) ∩ ∂−1

2 (V ) = {m ∈M | ∂1(m) ∈ V and ∂2(m) ∈ V }.

We now justify the terminology of the preceding definition. Fix i ∈ {1, 2}.

In the original group-theoretic context in which the problem of this thesis arose, the

operator ∂i corresponded to commutation with a certain group element in a group

containing M as a normal subgroup. For each V ∈ V , the centralizer of that element

in the quotient group M/V corresponds to what we call Ci(V ).

The reader should realize that both C1(V ) and C2(V ) are subspaces of M

since ∂1 and ∂2 are linear transformations. Further, from the definition it is clear that

if V1, V2 ∈ V , and V1 ⊆ V2, then C(V1) ⊆ C(V2). We also note that if V ∈ V then

V ⊆ C(V ) since V is doubly-invariant by definition. Further we have two important

results for determining the centralizer of a doubly-invariant subspace.

LEMMA 14: Fix a subspace V ∈ V and fix a point (i0, j0) ∈ U . Suppose that

B = {m(1), . . . , m(n)} is a basis for V such that m
(k)
i0,j0

= 0. Then if m ∈ C(V ), we

have mi0+1,j0 = mi0,j0+1 = 0.

Proof. We shall prove that mi0+1,j0 = 0. The proof that mi0,j0+1 = 0 follows similarly.

Let a = ∂1(m) ∈ V . Then by definition, ai0,j0 = mi0+1,j0 . However, note that our
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basis B satisfies the hypotheses of Lemma 11. Thus, mi0+1,j0 = ai0,j0 = 0.

COROLLARY 15: Let V ∈ V and fix a point (i0, j0) ∈ U . Assume m ∈ C(V ) and

that B = {m(1), . . . , m(n)} is a basis for V . Finally, let m ∈ C(V ) such that mi0,j0 6= 0.

Then we have the following:

1. If i0 = 0 and j0 6= 0, then there exists a matrix m(k) ∈ B such that m
(k)
i0,j0−1 6= 0.

2. If i0 6= 0 and j0 = 0, then there exists a matrix m(k) ∈ B such that m
(k)
i0−1,j0

6= 0.

3. If i0 6= 0 and j0 6= 0 then there exist matrices m(k),m(l) ∈ B such that m
(k)
i0−1,j0

6=

0 and m
(l)
i0,j0−1 6= 0.

The above lemma will be very useful later on when we actually start to

compute what the centralizers of the different subspaces in V look like. This will

be the case since it will allow us to know a priori that certain entries in the various

matrices in our centralizer are zero.

Next we shall give a theorem which will allow one to directly compute the

centralizers of coefficient pattern subspaces. Since the precise statement of this the-

orem will look obtuse at first glance, we offer the reader some examples. Hopefully

this will allow the reader to have a picture in mind when reading the statement of

the theorem.
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For the sake of illustration, let p = 5. Consider the pattern

α =




• • • • 0

• • 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Then C1(V (α)) = V (α1) and C2(V (α)) = V (α2) where

α1 =




• • • • •

• • • • 0

• • 0 0 0

0 0 0 0 0

0 0 0 0 0




, α2 =




• • • • •

• • • 0 0

• 0 0 0 0

• 0 0 0 0

• 0 0 0 0




.

Hence, C(V (α)) = V (α1) ∩ V (α2) = V (β) where

β =




• • • • •

• • • 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Notice where the new dots occur in our centralizer with respect to the original pattern.
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They are highlighted using squares:




• • • • ¤

• • ¤ 0 0

¤ 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Now consider another pattern α:

α =




• • • 0 0

• • 0 0 0

• • 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Then C1(V (α)) = V (α1) and C2(V (α)) = V (α2) where

α1 =




• • • • •

• • • 0 0

• • 0 0 0

• • 0 0 0

0 0 0 0 0




, α2 =




• • • • 0

• • • 0 0

• • • 0 0

• 0 0 0 0

• 0 0 0 0




.
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Hence, the C(V (α)) = V (α1) ∩ V (α2) = V (β) where

β =




• • • • 0

• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0




.

Notice where the new dots occur in our centralizer with respect to the original pattern.

They are highlighted using squares:




• • • ¤ 0

• • ¤ 0 0

• • 0 0 0

¤ 0 0 0 0

0 0 0 0 0




.

In general suppose that we are given a pattern α ∈ P and wish to determine

the centralizer C(V (α)) of its coefficient pattern subspace. Suppose further that

C(V (α)) = V (β) for the appropriate pattern β ∈ P . Notice that if we loosely regard

the sides of the matrix and the rows and columns of dots as “walls”, then we can

compute β by simply “filling in the corners” of α. We shall make this precise in the

next theorem. Through the statement and proof, the reader should keep the previous

two examples in mind as a picture of what is happening.
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THEOREM 16: For a pattern α ∈ P , define a function β : U → {0, 1} by

β(i, j) =





1





if i = 0 or α(i− 1, j) = 1

and

j = 0 or α(i, j − 1) = 1

0 otherwise.

Then β is a pattern and C(V (α)) = V (β).

Proof. We shall first prove that the function β is a pattern. To show that β is a

pattern, we must show that for a fixed i, the function β is nonincreasing in j as well

as that for a fixed j, the function β is nonincreasing in i. We shall only prove the

first of these assertions as the second is proven in a similar manner. In order to do

this, we must demonstrate that for a fixed i, if β(i, j) = 1 then β(i, l) = 1 for each

l ∈ {0, . . . , j}. To this end, fix a point (i0, j0) ∈ U and suppose that β(i0, j0) = 1.

Due to the definition of β we must break up the proof into two cases.

Case 1: Suppose that j0 = 0. Then it is trivially true that β(i0, l) = 1 for

each l ∈ {0, . . . , j0}.

Case 2: Suppose that j0 6= 0. Then α(i0, j0 − 1) = 1. By the definition of

pattern, this implies that α(i0, l) = 1 for each l ∈ {0, . . . , j0 − 1}. Then by definition

of β, we have β(i0, l) = 1 for each l ∈ {1, . . . , j0}. The only point left to consider is β’s

value at the point (i0, 0). There are two subcases. First, if i0 = 0, then, by definition,

β(i0, 0) = β(0, 0) = 1. Second, if i0 6= 0, then by definition, α(i0 − 1, 0) = 1. This

implies, by the definition of β, that β(i0, 0) = 1. In either case, β(i0, 0) = 1. Thus, it
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is the case that for each l ∈ {0, . . . , j0} we have β(i0, l) = 1. This implies that β is

nonincreasing in j.

We have proven that β is a pattern. We must now demonstrate that C(V (α)) =

V (β). First let m ∈ C(V (α)). Fix a point (i0, j0) ∈ U and suppose that mi0,j0 6= 0.

We shall consider four cases.

Case 1: Suppose that (i0, j0) = (0, 0). By definition, β(i0, j0) = β(0, 0) = 1.

Hence, ei0,j0 ∈ E(β).

Case 2: Suppose that i0 = 0 and j0 6= 0. Then by part 1 of Corollary 15,

we have ei0,j0−1 ∈ E(α). This implies that α(i0, j0 − 1) = 1. Thus, by definition,

β(i0, j0) = 1 which implies that ei0,j0 ∈ E(β).

Case 3: Suppose that i0 6= 0 and j0 = 0. Then by part 2 of Corollary 15,

we have ei0−1,j0 ∈ E(α). This implies that α(i0 − 1, j0) = 1. Thus, by definition,

β(i0, j0) = 1 which implies that ei0,j0 ∈ E(β).

Case 4: Suppose that i0 6= 0 and j0 6= 0. Then by part 3 of Corollary 15, we

have ei0−1,j0 , ei0,j0−1 ∈ E(α). This implies that α(i0− 1, j0) = 1 and α(i0, j0− 1) = 1.

Thus, by definition, β(i0, j0) = 1 which implies that ei0,j0 ∈ E(β).

In all cases, ei0,j0 ∈ E(β). Write E = { (i, j) ∈ U | β(i, j) = 1 }. Then we

can write m =
∑

(k,l)∈E mi,j · ei,j ∈ V (β). Hence, C(V (α)) ⊆ V (β).

We must now prove containment in the other direction. To this end, sup-

pose that for some point (i0, j0) ∈ U the matrix ei0,j0 ∈ V (β). We must show

that ∂1(ei0,j0) ∈ V (α) and ∂2(ei0,j0) ∈ V (α). We shall show that ∂1(ei0,j0) ∈ V (α)

as the proof that ∂2(ei0,j0) ∈ V (α) is similar. By definition, ei0,j0 ∈ V (β) im-
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plies that β(i0, j0) = 1. There are two cases to consider. First, if i0 = 0, then

∂1(ei0,j0) = ∂1(e0,j0) = 0m where 0m is the zero matrix. Clearly, 0m ∈ V (α). Second,

if i0 6= 0, then α(i0 − 1, j0) = 1. This implies that ∂1(ei0,j0) = ei0−1,j0 ∈ V (α). In

either case, ∂1(ei0,j0) ∈ V (α). Thus, ei0,j0 ∈ V (β) implies that ei0,j0 ∈ C(V (α)).

Hence, V (β)’s basis elements are in C(V (α)). This implies that V (β) ⊆ C(V (α)).

Therefore, V (β) = C(V (α)) and we are done.

Theorem 16 gives us not only a useful characterization of the centralizers of

the coefficient pattern subspaces, but will also play a pivotal role in determining when

the process we use to construct our subspaces terminates. We need just one more

main result to obtain said algorithm.

THEOREM 17: Let W ⊆ V where W ∈ V and V ∈ V . Suppose further that

dim(V ) = dim(W ) + 1. Then V ⊆ C(W ).

Proof. Fix v0 ∈ V −W and note that V/W = { c · v0 + W | c ∈ Zp}. Fix i ∈ {1, 2}.

Since both V and W are ∂i-invariant, the linear transformation ∂i induces a linear

transformation on the one-dimensional quotient space V/W . Write u0 = ∂i(v0).

Hence, there exists a constant c0 ∈ Zp such that u0 + W = c0v0 + W . Thus, for

each v + W = cv0 ∈ V/W , we have ∂i(v + W ) = ∂i(c · v0) + W = cc0 · v0 + W =

c0 · v + W . Hence, ∂i acts as multiplication by the scalar c0 on V/W . This further

implies that ∂p
i (v + W ) = cp

0 · v + W . Recall that the linear transformation ∂i is

nilpotent. In particular, from the definition of ∂i, we have that ∂p
i = 0. Thus, for

each v + W ∈ V/W , we have W = 0 + W = ∂p
i (v) + W = ∂p

i (v + W ) = cp
0 · v + W .
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This implies that cp
0 = 0. Since Zp is a field, this demonstrates that c0 = 0. Thus, the

linear transformation induced by ∂i acts trivially on the quotient space V/W . Hence,

∂i(V ) ⊆ W which gives our result that V ⊆ C(W ).

Although the last theorem was a bit abstract in its statement, it will allow us

to construct the subspaces of V iteratively. To this end, consider a pattern α ∈ P . If

V ∈ V(α), then there exist matrices m1, . . . , mn, such that V = 〈E(α),m1, . . . ,mn〉

where E(α)∪ {m1, . . . , mn} is a linearly independent set. Write V = Vn and V (α) =

V0. The question becomes how to proceed from V0 to Vn in a sensible way. This is

answered using the above theorem. Write V1 = 〈V0,m1〉. Then dim(V1) = dim(V0)+1

and V0 ⊆ V1. Also, both V0 and V1 are doubly-invariant by assumption. Hence,

Theorem 17 yields that V1 ⊆ C(V0). By assumption E(α) ∪ {m1} is a linearly

independent set. Thus, m1 ∈ C(V0) but m1 /∈ V0. We may make a similar argument

for m2. Write V2 = 〈V0,m1,m2〉. Then dim(V2) = dim(V1) + 1 and V1 ⊆ V2. Also,

both V1 and V2 are doubly-invariant by assumption. Hence, Theorem 17 yields that

V2 ⊆ C(V1). By assumption E(α) ∪ {m1,m2} is a linearly independent set. Thus,

m2 ∈ C(V1) but m2 /∈ V1. We may make a similar argument for the matrices m3

through mn.

The above paragraph shows how we may build the elements of V(α) induc-

tively. Write V0 = V (α). Compute C(V0). Choose a non-zero matrix m1 ∈ C(V0)

and m1 /∈ V0. Write V1 = 〈V0, m1〉. Compute C(V1). Choose a non-zero matrix

m2 ∈ C(V1) and m1 /∈ V1. Write V2 = 〈V0,m1,m2〉 = 〈V1,m2〉. In general, we may

proceed from the subspace Vi to the subspace Vi+1 in a similar manner. Compute
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C(Vi). Choose a non-zero matrix mi+1 ∈ C(Vi) and mi /∈ Vi. Write Vi+1 = 〈Vi,mi+1〉.

The only question in this whole process is whether or not when we proceed

from Vi to Vi+1 that our new subspace is in V(α). That is, if Vi ∈ V(α), how do we

know that Vi+1 ∈ V(α)? How are we assured that there might not exist a pattern

β ∈ P such that Vi+1 ∈ V(β) even though Vi ∈ V(α). The answer to this lies in

avoiding adding standard basis matrices to our new subspaces other than the ones

which we have from our original coefficient pattern subspace. Before the statement

of the theorem is given, the reader will be given two examples to keep in mind.

First, suppose that p = 5 and that V ∈ V(α) where

α =




• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Suppose that using the above outlined method, we choose a matrix m ∈ C(V ) such

that m /∈ V and form the subspace W = 〈V,m〉. Now suppose further that

e3,2 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0




∈ W.
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Since W is doubly-invariant, this means that all derivatives of e3,2 are in W as well.

In particular, we can “move” e3,2 left until it runs into a wall of the matrix or column

of dots. More precisely, note that

∂2
2(e3,2) = ∂2(e3,1) = e3,0 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




∈ W.

Now we may “move” e3,0 up until we run into the wall of the matrix or a row of dots.

More precisely, note that

∂1(e3,0) = e2,0 =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




∈ W.

Thus, if e3,2 ∈ W , then e2,0 ∈ W . However, since V (α) ⊆ W it is also the case that

e0,0, e1,0, e0,1 ∈ W . Notice though, that this means that V (β) ⊆ W where

β =




• • 0 0 0

• 0 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.
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Note that α ≺ β. Hence, W /∈ V(α).

Again, suppose that p = 5 and that V ∈ V(α) where

α =




• • 0 0 0

• • 0 0 0

• 0 0 0 0

• 0 0 0 0

0 0 0 0 0




.

Suppose that using the above outlined method, we choose a matrix m ∈ C(V ) such

that m /∈ V and form the subspace W = 〈V,m〉. Now suppose further that

e3,4 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0




∈ W.

Since W is doubly-invariant, this means that all derivatives of e3,4 are in W as well.

In particular, we can “move” e3,4 left until it runs into a wall of the matrix or column

of dots. More precisely, note that

∂3
2(e3,4) = e3,1 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




∈ W.
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Now we may “move” e3,1 up until we run into the wall of the matrix or a row of dots.

More precisely, note that

∂1(e3,1) = e2,1 =




0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




∈ W.

Thus, if e3,4 ∈ W , then e2,1 ∈ W . However, since V (α) ⊆ W it is also the case

that e0,0, e1,0, e2,0, e3,0, e0,1, e1,1 ∈ W . Notice though, that this means that V (β) ⊆ W

where

β =




• • 0 0 0

• • 0 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0




.

Note that α ≺ β. Hence, W /∈ V(α).

The following theorem shall make precise the above illustrations. We will take

some arbitrary standard basis matrix and “move” it around until we have evidence

that our new subspace is contained in a larger pattern subspace.

THEOREM 18: Fix a point (i0, j0) ∈ U , a pattern α ∈ P , and a subspace V ∈ V .

Suppose that V (α) ⊆ V and ei0,j0 /∈ E(α) and ei0,j0 ∈ V . Then V /∈ V(α).
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Proof. In order to prove the theorem we shall construct a new pattern β and show

that V (β) ⊆ V and α ≺ β. This will give us our desired result. Since V ∈ V , we know

that {∂i0
1 (ei0,j0), ∂

i0−1
1 (ei0,j0), . . . , ∂1(ei0,j0), ei0,j0} = {e0,j0 , e1,j0 . . . ei0,j0} ⊆ V . In other

words, for each k ∈ {0, . . . , i0} we have ek,j0 ∈ V . Once again, since V ∈ V , we know

that for each k ∈ {0, . . . , i0} we have {∂j0
2 (ek,j0), ∂

j0−1
2 (ek,j0), . . . , ∂2(ek,j0), ek,j0} =

{ek,0, ek,1 . . . ek,j0} ⊆ V . Thus, we have E = { ek,l | 0 ≤ k ≤ i0 and 0 ≤ l ≤ j0 } ⊆ V .

We shall now define our new pattern β in the following manner:

β(i, j) =





1





if 0 ≤ i ≤ i0 and 0 ≤ j ≤ j0

or

α(i, j) = 1

0 otherwise.

We must still demonstrate that β is a pattern. Note that if β is a pattern, then α ≺ β

and V (β) ⊆ V and our result follows. However, it immediately follows that β is a

pattern due to the construction of set the E and the fact that α is pattern.

From the above theorem, we see that there is a bit of a hitch in our algorithm

to construct the subspaces in V(α) for some pattern α ∈ P . That is, in order to move

from Vi to Vi+1, we must choose a matrix mi ∈ C(Vi) where mi /∈ V . However, we

must ensure that if ei,j ∈ Vi+1, then ei,j ∈ Vi. Otherwise, Theorem 18 tells us that

there exists a pattern β ∈ P such that α ≺ β and Vi+1 ∈ V(β).

Finally, we may also use the above theorem to state when the algorithm

terminates. Consider a pattern α ∈ P and let V ∈ V(α). If dim(C(V )) = dim(V )+1,

26



then there is no matrix m such that m ∈ C(V ), m /∈ V , and 〈V,m〉 ∈ V(α). The

reason is as follows. Write W = 〈V,m〉. Then, dim(C(V )) = dim(W ) and, by

construction, W ⊆ C(V ). Thus, W = C(V ). Now recall that V (α) ⊆ V which

implies that C(V (α)) ⊆ C(V ) = W . Use theorem 16 to define the pattern β ∈ P , by

V (β) = C(V (α)). From theorem 16, we know that α ≺ β. Hence, V ∈ V(β). Thus,

our process terminates when dim(C(V )) = dim(V ) + 1.

We now write down the algorithm for computing all of the elements of V .

1. Choose a pattern α ∈ P . Let i = 0. Let V0 = V(α).

2. Compute C(Vi).

3. If dim(C(V ))− dim(V ) ≤ 1, then stop.

4. Choose mi+1 ∈ C(Vi)− Vi such that if ei,j ∈ 〈Vi,mi+1〉, then ei,j ∈ Vi.

5. Let Vi+1 = 〈Vi,mi+1〉.

6. Increment i and go to 2.

In this way, we will be able to compute all of the subspaces of V . However, the

difficult part will be avoiding adding new standard basis vectors to our subspaces.

This is the topic of the next chapter.

We finish this chapter by giving some additional definitions which will be

useful in recording information about the subspaces of V .

DEFINITION (19): For a pattern α ∈ P and a nonnegative integer `, define the

set of subspaces for the pattern α at level `, denoted V(α)`, to be the set of
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subspaces V ∈ V(α) such that dim(V ) = dim(V (α)) + `. In symbols, V(α)` = { V ∈

V(α) | dim(V ) = dim(V (α)) + ` }.

Clearly, for a pattern α ∈ P , we have V(α)0 = {V (α)}, and we have the

disjoint union V(α) =
⋃∞

`=0 V(α)`. Also, since M is finite dimensional, there exists a

unique nonnegative integer ht(α) dependent on α such that V(α)` is non-empty for

` ≤ ht(α) and V(α)` is empty for ` > ht(α). We define ht(α) to be the height of the

pattern α. Thus, we can write

V(α) =

ht(α)⋃

`=0

V(α)`,

and this last union is disjoint.
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CHAPTER III

SUBSPACES NOT CONTAINING STANDARD BASIS VECTORS

In Chapter II, we noted that avoiding standard basis matrices is an essential part

of our algorithm for enumerating and identifying the doubly-invariant subspaces of

M. We need a systematic way to do this. Recall that we can regard the set of p× p

matrices as a vector space of dimension p2 over its associated field. In this section

we will simply look at the space of n-tuples over the field Zp. We will develop a

convenient way to represent subspaces that do not contain standard basis vectors.

This will, in turn, give us a convenient way to represent elements of those subspaces

as well as allow us to easily count the number of such subspaces.

Let p be a prime and let K be the finite field of order p. Fix an integer n ≥ 2.

Let V be the set of all ordered n-tuples with components from K. Thus we write

V = { (v1, . . . , vn) |vi ∈ K }. For each index i ∈ {1, . . . , n}, let ei = (0 . . . , 0, 1, 0 . . . 0)

be the vector whose ith component is 1 and all of whose other components are 0. Thus,

{e1, . . . , en} is an ordered basis for the n-dimensional vector space V over K. We refer

to each ei as a standard basis vector. We wish to investigate the subspaces of V which

do not contain any standard basis vectors. In particular, for a given positive integer

m such that m < n, we want to count the number of such subspaces of dimension m

in V , as well as obtain a convenient basis for each. We mention that this convenient
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basis will be obtained using ideas which are very similar to the notion of reduced

row echelon form for a matrix . To this end, we will make use of the following useful

functions α and νi.

DEFINITION 1: Let v = (v1, . . . , vn) ∈ V . We define

α(v) =





min({i | vi 6= 0}) if v 6= 0

0 if v = 0.

For 1 ≤ i ≤ n, we define νi(v) = vi.

It should be noted that νi is a linear function. Using νi we note that νj(ei) =

δi,j where δi,j is the familiar Kronecker delta function,

δi,j =





1 if i = j

0 if i 6= j.

What follows are the main definitions of this section and the results we need

in order to proceed.

DEFINITION 2: A subspace W of V is a good subspace if {e1, . . . , en} ∩W = Ø.

DEFINITION 3: A set of leading positions, T = {t1, . . . , tm}, is a strictly increas-

ing sequence of indices from the set {1, . . . , n− 1}.

DEFINITION 4: A good vector v is any non-zero vector having these properties:

1. v /∈ {e1 . . . en}

2. If α(v) = t, then νt(v) = 1.
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DEFINITION 5: Let m be a positive integer such that m < n, and let T =

{t1, . . . , tm} be a set of leading positions. A canonical basis corresponding to

T is an ordered set of good vectors {v1, . . . , vm} such that:

1. α(vi) = ti.

2. νtj(vi) = δi,j.

In a bit we will justify our use of the term canonical as well as list some of

the nice properties of such bases. However, the first matter to attend to is to show

that every good subspace of V has a canonical basis corresponding to some set of

leading positions.

THEOREM 6: Let m be any positive integer such that m < n. If W is an m-

dimensional good subspace of V , then there exists a set of leading positions, T =

{t1, . . . , tm}, and a canonical basis B = {v1, . . . , vm} for W corresponding to T .

Proof. Since W is an m-dimensional subspace, it has some basis B′ = {w1, . . . , wm}.

Let M ′ = [a′i,j] be the m × n matrix whose rows are the vectors from B′. More

precisely a′i,j = wi,j where wi,j is the jth entry of the vector wi, i.e. a′i,j = νj(wi).

By elementary linear algebra, there is another m × n matrix M = [ai,j] where M is

the reduced row echelon form for M ′. Let B = {v1, . . . , vm} be the set of row vectors

from M such that vi is the ith row vector from M . By elementary linear algebra, we

know that the row space of a matrix is invariant under elementary row operations.

Further, the non-zero rows in any matrix in reduced row echelon form are always

linearly independent. Hence, B is a basis for W . Further, B ∩ {e1, . . . , en} = Ø by
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assumption since W is a good subspace. Define T = {t1, . . . , tm} by ti = α(vi). Since

en /∈ B, we know that tm ≤ n−1. Further, from the definition of reduced row echelon

form, we have that νtj(vi) = δi,j and that if α(vi) = ti, then tj > ti when j > i. Thus,

T is a set of leading positions and B is a canonical basis corresponding to T .

We now know that every good subspace has a canonical basis corresponding

to some set of leading positions. What we now wish to establish is the converse,

namely, that if you have some set of leading positions and a basis which corresponds

to it, then the span of that basis is a good subspace. Before we do this, we will need

an intermediate result which is useful in its own right for computations we do down

the road.

LEMMA 7: Let W be a subspace of V , let T = {t1, . . . , tm} be a set of leading

positions, and suppose that that W has a basis B = {w1, . . . , wm} such that νtj(wi) =

δi,j, then x =
∑m

i=1 νti(x)wi.

Proof. The fact that x ∈ W implies that x =
∑m

i=1 αiwi for some set of coefficients

α1, . . . , αm ∈ K. By our assumption on B, we have that νtj(wi) = δi,j for each pair

of indices i, j ∈ {1, . . . ,m}. Hence for each j ∈ {1, . . . , m}, using the linearity of νtj

we obtain

νtj(x) =
m∑

i=1

αiνtj(wi) =
m∑

i=1

αiδi,j = αj.

For use in later chapters, the reader should note that Lemma 7 did not assume

that W is good subspace. We may now proceed to the desired theorem.
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THEOREM 8: Let T = {t1, . . . , tm} be a set of leading positions and let B =

{w1, . . . , wm} be a canonical basis corresponding to T . Write W = span(B). Then:

1. If x ∈ W , then x =
∑m

i=1 νti(x)wi.

2. W is a good subspace of V .

3. If B′ = {v1, . . . , vm} is another canonical basis corresponding to T and B 6= B′,

then W 6= span(B′).

Proof. 1. This follows immediately by Lemma 7 and the definition of a canonical

basis.

2. We must show that W ∩ {e1, . . . , en} = Ø. To this end, we assume

instead that ej ∈ W for some index j ∈ {1, . . . , n}, and work for a contradiction.

By Lemma 7 we have ej =
∑m

i=1 νti(ej)wi. For each i ∈ {1, . . . , m}, recall that

νti(ej) = δti,j. If j /∈ T , then νti(ej) = 0 for each i ∈ {1, . . . , m}, which implies that

ej =
∑m

i=1 νti(ej)wi =
∑m

i=1 0 · wi = 0. This is a contradiction. Hence, j ∈ T which

implies that j = tk for some k ∈ {1, . . . , m}. Thus, ej = etk =
∑m

i=1 νti(eti)wi = wi.

However, this contradicts the assumption that wi is a good vector. Therefore, ej /∈ W

which implies that W is a good subspace and part 2 is proved.

3. The fact that B 6= B′ implies that there is an index j ∈ {1, . . . , n} such

that wj 6= vj. Suppose for a contradiction that W = span(B′). Then vj ∈ W and by

part 1 of the theorem and the fact that B′ is a canonical basis corresponding to T , we

have vj =
∑m

i=1 νti(vj)wi = wj. This is a contradiction. Hence, part 3 is proved.

33



Thanks to Theorems 6 and 8, we are justified in describing as canonical the

bases defined by Definition 5. Thus, we may speak of the canonical basis of any good

subspace. Finally, we also have a way to construct all canonical bases for all good

subspaces of V :

1. Fix a positive integer m such that m < n.

2. Choose a set of leading positions, T = {t1, . . . , tm}.

3. Choose a basis B = {v1, . . . , vm} such that vi is a good vector and such that

νtj(vi) = δi,j.

4. Repeat step 3 for each set of leading positions of size m.

5. Repeat steps 2–4 for each m such that 1 ≤ m ≤ n− 1.

Notice that step 3 is accomplished by setting the tith component of the vector

vi equal to 1, setting all components before the tith entry equal to zero, and choosing

arbitrary values for all other components which are not the tjth components and

making sure that there is at least one non-zero entry past the tith entry. Notice that

constructing bases in this fashion allows us to easily count how many there are for a

given set of leading positions T = {t1, . . . , tm}. Since each canonical basis corresponds

to a unique good subspace and vice versa, we are thus able to count how many good

subspaces there are associated with T .
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DEFINITION 9: Let W be a good subspace of V and B = {v1, . . . , vm} its canon-

ical basis corresponding to some set of leading positions T = {t1, . . . , tm} which is

guaranteed to exist by Theorem 6. Then W is said to be associated to T .

We note that Definition 9 is unambiguous thanks to Theorems 6 and 7. We

now use this definition and the paragraph preceding it to form the following theorem.

THEOREM 10: Fix a positive integer m such that m < n, and let T = {t1, . . . , tm}

be a set of leading positions. Then the number of good subspaces of V that are

associated to T , denoted g(T ), is

m∏
i=1

(pn−m−ti+i − 1).

Proof. We must count how many ways there are to choose a canonical basis B =

{v1, . . . , vm} corresponding to the set of leading positions T . This amounts to count-

ing the number of different ways there are to choose the ith vector. Since the vector

vi corresponds to the number ti, we have that the first ti− 1 entries of the ith vector

are zero. Also, since B is a canonical basis by assumption, entry ti is 1, and entries

ti+1, . . . , tm are all zero. This leaves n − ti − (m − i) entries left to fill. We may

arbitrarily choose their values except for the case in which all are zero. Hence, we

have pn−ti−(m−i)− 1 choices for the ith vector. Thus, multiplying the choices we have

for each vector together, we find that we have

m∏
i=1

(pn−m−ti+i − 1).

choices total for our basis and the theorem is proved.
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Table 3.1: Illustration of Theorem 10

n m T g(T )

2 1 {1} p− 1

3 1 {1} p2 − 1

3 1 {2} p− 1

3 2 {1,2} (p− 1)(p− 1)

4 1 {1} p3 − 1

4 1 {2} p2 − 1

4 1 {3} p− 1

4 2 {1,2} (p2 − 1)(p2 − 1)

4 2 {1,3} (p2 − 1)(p− 1)

4 2 {2,3} (p− 1)(p− 1)

4 3 {1,2,3} (p− 1)(p− 1)(p− 1)

Table 3.1 illustrates Theorem 10 under various inputs for the dimension of

the ambient vector space n, the dimension of the subspace m, and the set of leading

positions T .
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CHAPTER IV

THE RESULTS FOR THE PRIME 2

For the prime p = 2, the only interesting pattern is

α =



• 0

0 0


 .

We want to list the subspaces in the set V(α). To this end, we define the basis

B0 = E(α) and the subspace V0 = V (α) = 〈B0〉. Theorem 16 from Chapter II

demonstrates that C(V0) = V (β) where

β =



• •

• 0


 .

Since dim(C(V0)) − dim(V0) = 2, we must choose a matrix m1 ∈ C(V0) − V0 such

that for each point (i, j) ∈ U , if ei,j ∈ 〈V0,m1〉, then ei,j ∈ V0. Hence, we want the

1-dimensional good subspaces of Z2 × Z2. From the construction of such spaces in

the previous chapter, we know that there is only one. This is generated by the vector

(1, 1). To this end, we define

m1 =




0 1

1 0


 ,

B1 = E(α) ∪ {m1}, and V1 = 〈B1〉. Note that B1 is a basis of the subspace V1 that

satisfies the hypotheses of Lemma 7 from Chapter III.
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Table 4.1: Results For The Pattern α

ht(α) |V(α)0| |V(α)1| |V(α)|

1 1 1 2

Let us now compute the centralizer of V1. Each element of C(V1) has form

x =




x0,0 x0,1

x1,0 x1,1


 .

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1

0 0


 and ∂2(x) =




x0,1 0

x1,1 0


 .

Suppose ∂1(x) ∈ V1, and consider the expansion of ∂1(x) with respect to the basis B1.

By Lemma 7 in Chapter III the coefficient on m1 in the expansion of ∂1(x) must be 0.

This would imply that x1,1 = 0 and dim(C(V1))− dim(V1) = 1. Thus our algorithm

terminates and we are finished with this pattern. A summary is given in the table

below.

For any other pattern γ ∈ P such that γ 6= α it is the case that dim(C(V (γ)))−

dim(V (γ)) ≤ 1. The reader can verify this by applying Theorem 16 to any pattern

in question. However, there is an easier way to see this using the language we used

in Chapter II to motivate Theorem 16. The reader should note that each of these

patterns has at most one “corner”. These patterns are:



0 0

0 0






• •

0 0


 ,



• 0

• 0


 ,



• •

• 0


 ,



• •

• •


 .
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For each of these five patterns γ, it is the case that V(γ) = {V (γ)}. Thus, when

p = 2, there are 7 doubly-invariant subspaces of M. That concludes the results for

the case p = 2.
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CHAPTER V

THE RESULTS FOR THE PRIME 3

There are only two interesting patterns in the case p = 3. As we shall see later, all of

the others are similar to the patterns in the p = 2 case. The first interesting pattern

is

α1 =




• 0 0

0 0 0

0 0 0




.

We want to list the subspaces in the set V(α1). To this end, we define the basis

B0 = E(α1) and the subspace V0 = V (α1) = 〈B0〉. Theorem 16 from Chapter II

demonstrates that C(V0) = V (β1) where

β1 =




• • 0

• 0 0

0 0 0




.

Define the basis B′
0 = E(β1) and note that V (β1) = 〈B′

0〉. Since dim(C(V0)) −

dim(V0) = 2, we must choose a matrix m1 ∈ C(V0) − V0 such that for each point

(i, j) ∈ U , if ei,j ∈ 〈V0,m1〉, then ei,j ∈ V0. Hence, we want the 1-dimensional good

subspaces of Z3 × Z3. From the construction of such spaces in Chapter III, we know

that there are two. These are generated by the vectors (1, 1) and (1, 2). Fix any
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scalar 0 6= c1 ∈ Z3 and define

m1 =




0 c1 0

1 0 0

0 0 0




,

B1 = E(α1) ∪ {m1}, and V1 = 〈B1〉. Note that B1 is a basis of the subspace V1 that

satisfies the hypotheses of Lemma 7 from Chapter III.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 0

x2,0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 0

x2,0 0 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 0 0

0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x1,1 = c1 · x2,0,

and that ∂2(x) ∈ V1 if and only if

x0,2 = c1 · x1,1.
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Hence, x ∈ C(V1) if and only if

x1,1 = c1 · x2,0

x0,2 = c2
1 · x2,0.

Therefore, if we define

v1 =




0 0 c2
1

0 c1 0

1 0 0




and B′
1 = B′

0 ∪ {v1}, then C(V1) = 〈B′
1〉. Since dim(C(V1)) − dim(V1) = 2, we must

choose a matrix m2 ∈ C(V1) − V1 such that if ei,j ∈ 〈V1,m2〉, then ei,j ∈ V1. If

the (1,0)-entry of m2 is non-zero, we can subtract off appropriate multiples of m1 to

obtain a new matrix whose (1,0)-entry is 0. We may do this since the (1,0)-entry of

m1 is 1. Hence, we may assume without loss of generality that the (1,0)-entry of m2

is 0. Consider the expansion of m2 with respect to the basis B′
1. If the coefficient on

v1 in the expansion of m2 is 0, then the only non-zero entry of m2 is the (0,1)-entry.

However, that would mean e0,1 ∈ 〈V1,m2〉 even though e0,1 /∈ V1. Thus, the coefficient

on v1 in the expansion of m2 must be non-zero. Since we may scale the coefficient

on v1, we shall choose said coefficient to be 1. Hence, we fix c2 ∈ Z3 and define the

matrix

m2 =




0 c2 c2
1

0 c1 0

1 0 0




,
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Table 5.1: Results For The Pattern α1

ht(α1) |V(α1)0| |V(α1)1| |V(α1)2| |V(α1)|

2 1 2 6 9

B2 = B1 ∪ {m2}, and V2 = 〈B2〉. Note that we may have c2 = 0 without worrying

about having a standard basis vector in our span. Note that B2 is a basis for the

subspace V2 that satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2

x2,0 x2,1 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 x1,2 0

x2,1 0 0




.

Suppose ∂1(x) ∈ V2, and consider the expansion of ∂1(x) with respect to the basis

B2. By Lemma 7 in Chapter III the coefficient on m2 in the expansion of ∂1(x) must

be 0. This would imply that x2,1 = x1,2 = 0 and dim(C(V2)) − dim(V2) = 1. Thus

our algorithm terminates and we are finished with this pattern. A summary is given

in table 5.1. Recall that we had 2 choices for c1 and 3 choices for c2.
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The second pattern is even more interesting that the first. We define the

pattern

α2 =




• • 0

• 0 0

0 0 0




.

We want to list the subspaces in the set V(α2). To this end, we define the basis

B0 = E(α2) and the subspace V0 = V (α2) = 〈B0〉. Theorem 16 from Chapter II

demonstrates that C(V0) = V (β2) where

β2 =




• • •

• • 0

• 0 0




.

Define the basis B′
0 = E(β2) and note that V (β2) = 〈B′

0〉. Since dim(C(V0)) −

dim(V0) = 3, we must choose a matrix m1 ∈ C(V0) − V0 such that for each point

(i, j) ∈ U , if ei,j ∈ 〈V0, m1〉, then ei,j ∈ V0. Hence, we want the 1-dimensional

good subspaces of Z3 × Z3 × Z3. From the construction of such spaces in Chapter

III, we know that there are ten such subspaces. These are generated by the vectors

(0, 1, 1), (0, 1, 2), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), and

(1, 2, 2). This count agrees with the table at the end of Chapter III. Note that such

subspaces are generated by vectors of two different forms. The first form is (0, 1, c1)

where c1 6= 0. The second form is (1, c1, c2) where (c1, c2) 6= (0, 0). As there are two

different forms for the vectors, we shall break up our discussion into two cases.
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Case 1: Fix c1 ∈ Z3 and define

m1 =




0 0 c1

0 1 0

0 0 0




,

B1 = E(α2) ∪ {m1}, and V1 = 〈B1〉. Note that B1 is basis for the subspace V1 that

satisfies the hypotheses of Lemma 7 from Chapter III.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2

x2,0 x2,1 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 x1,2 0

x2,1 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x1,2 = c1 · x2,1,

and that ∂2(x) ∈ V1 if and only if

x2,1 = 0.
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Hence, x ∈ C(V1) if and only if

x2,1 = 0

x1,2 = c1 · x2,1 = 0.

Hence, C(V1) = C(V0). Thus, dim(C(V1))− dim(V1) = 2.

Case 2: Fix c1, c2 ∈ Z3 such that (c1, c2) 6= (0, 0) and define

m1 =




0 0 c2

0 c1 0

1 0 0




B1 = E(α2)∪ {m1}, and V1 = 〈B1〉. Note that B1 is a basis for the subspace V1 that

satisfies the hypotheses of Lemma 7 from Chapter III.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2

x2,0 x2,1 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 x1,2 0

x2,1 0 0




.

Suppose ∂1(x) ∈ V1, and consider the expansion of ∂1(x) with respect to the basis

B1. By Lemma 7 in Chapter III the coefficient on m1 in the expansion of ∂1(x) must

be 0. This would imply that x2,1 = x1,2 = 0 and dim(C(V1))− dim(V1) = 2.
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Hence, in either case, we want the 2-dimensional good subspaces of Z3×Z3×

Z3. From the construction of such spaces in Chapter III, we know that there are

four. These are generated by sets of vectors of the form {(1, 0, c3), (0, 1, c4)} where

c3, c4 6= 0. Thus, fix non-zero scalars c3, c4 ∈ Z3 and define

m2 =




0 0 c3

0 0 0

1 0 0




, m3 =




0 0 c4

0 1 0

0 0 0




,

B2 = E(α2) ∪ {m2,m3}, and V2 = 〈B2〉. Note that B2 is a basis for the subspace V2

that satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2

x2,0 x2,1 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 x1,2 0

x2,1 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x1,2 = c4 · x2,1,
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and that ∂2(x) ∈ V2 if and only if

c3 · x2,1 + c4 · x1,2 = 0.

Hence, x ∈ C(V2) if and only if

c3 · x2,1 + c2
4 · x2,1 = (c3 + c2

4) · x2,1 = 0.

Hence, there are two cases. In the first case, c3 6= −c2
4. This implies that x2,1 = 0

since the entries in the matrices come from a field. This further shows that x1,2 = 0.

Thus, C(V2) = C(V1) = C(V0) which implies that dim(C(V2))− dim(V2) = 1 and the

algorithm terminates. However, in the second case, if c3 = −c2
4, then dim(C(V2)) −

dim(V2) = 2. More explicitly, if we define

v1 =




0 0 0

0 0 c4

0 1 0




,

and B′
2 = B′

0 ∪ {v1}, then C(V2) = 〈B′
2〉. Since dim(C(V2)) − dim(V2) = 2, we must

choose a matrix m4 ∈ C(V2)−V2 such that for each point (i, j) ∈ U , if ei,j ∈ 〈V2,m1〉,

then ei,j ∈ V2. If the (2,0)-entry of m4 is non-zero, we can subtract off appropriate

multiples of m4 to obtain a new matrix whose (2,0)-entry is 0. We may do this since

the (2,0)-entry of m2 is 1. Hence, we assume without loss of generality that the (2,0)-

entry of m4 is 0. For similar reasons, we assume without loss of generality that the

(1,1)-entry of m4 is 0. Consider the expansion of m4 with respect to the basis B′
2. If

the coefficient on v1 in the expansion of m4 is 0, then the only non-zero entry of m4
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is the (0,2)-entry. However, that would mean e0,2 ∈ 〈V1,m4〉 even though e0,2 /∈ V1.

Thus, the coefficient on v1 in the expansion of m4 must be non-zero. Since we may

scale the coefficient on v1, we shall choose said coefficient to be 1. Hence, fix c5 ∈ Z3

and define the matrix

m4 =




0 0 c5

0 0 c4

0 1 0




,

B3 = B2 ∪ {m4}, and V3 = 〈B3〉. Note that B3 is a basis for the subspace V3

that satisfies the hypotheses of Lemma 7 in Chapter III. Lemma 14 in Chapter II

demonstrates that the elements in C(V3) will take the form shown below.

Let us now compute the centralizer of V3. Each element of C(V3) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x2,0 x2,1 x2,2




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2

x2,0 x2,1 x2,2

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 x1,2 0

x2,1 x2,2 0




.

Suppose ∂1(x) ∈ V3, and consider the expansion of ∂1(x) with respect to the basis B3.

By Lemma 7 in Chapter III the coefficient on m4 in the expansion of ∂1(x) must be

0. This would imply that x2,2 = 0 and dim(C(V3))− dim(V3) = 1 and the algorithm

terminates.
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Table 5.2: Results For The Pattern α2

ht(α2) |V(α2)0| |V(α2)1| |V(α2)2| |V(α2)3| |V(α2)|

3 1 10 4 2 17

This is the first of many investigations in which our arguments must be

broken up on the basis of what we call coefficient relationships. This will cause added

difficulty in presenting a summary. Fortunately, the coefficient relationship c3 = −c2
4

is sufficiently simple. By inspection, the only pairs of numbers (c3, c4) that satisfy

the equation c3 = −c2
4 are c3 = 2, c4 = 1 and c3 = c4 = 2. We summarize the result

of this pattern in Table 5.2 .

The other patterns are handled in a manner similar to all of the patterns for

the case p = 2. For instance, consider the pattern

α =




• 0 0

• 0 0

0 0 0




.

We want to list the subspaces in the set V(α). To this end define the basis B0 = E(α)

and the subspace V0 = V (α) = 〈B0〉. Theorem 16 from Chapter II demonstrates that

C(V0) = V (β) where

β =




• • 0

• 0 0

• 0 0




.
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Write B′
0 = E(β) and note V (β) = 〈B′

0〉. Since dim(C(V0))− dim(V0) = 2, we must

choose a matrix m ∈ C(V0)− V0 such that for each point (i, j) ∈ U if ei,j ∈ 〈V0,m〉,

then ei,j ∈ V0. Hence, we want the 1-dimensional good subspaces of Z3 × Z3. From

the construction of such spaces in Chapter III, we know that these are generated by

the vectors of the form (1, c) where c 6= 0. To this end, fix a non-zero scalar c ∈ Z3

and define

m =




0 c 0

0 0 0

1 0 0




,

B1 = B0 ∪ {m}, and V1 = 〈B1〉. Note that B1 is a basis of the subspace V1 that

satisfies the hypotheses of Lemma 7 from Chapter III.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has form

x =




x0,0 x0,1 x0,2

x1,0 x1,1 0

x2,0 x2,1 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 0

x2,0 x2,1 0

0 0 0




and ∂2(x) =




x0,1 x0,2 0

x1,1 0 0

x2,1 0 0




.

Suppose ∂1(x) ∈ V1, and consider the expansion of ∂1(x) with respect to the basis

B1. By Lemma 7 in Chapter III the coefficient on m in the expansion of ∂1(x) must
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Table 5.3: Results For The Pattern α

ht(α) |V(α)0| |V(α)1| |V(α)|

1 1 2 3

be 0. This would imply that x1,1 = 0. Also, ∂1(x) ∈ V1 implies that x2,1 = 0. Hence,

C(V1) = C(V0) and dim(C(V1)) − dim(V1) = 1. Thus our algorithm terminates and

we are finished with this pattern. A summary is given in Table 5.3.

Computing V(α) is handled in a similar manner for the patterns below (the

reader is invited to verify this). Using the language we used in Chapter II to motivate

Theorem 16, the reader should note that each of these patterns has exactly two

“corners”:




• • 0

0 0 0

0 0 0




,




• • 0

• 0 0

• 0 0




,




• • •

• 0 0

0 0 0




,




• • 0

• • 0

0 0 0




,




• • 0

• • 0

• 0 0




,




• • •

• • 0

0 0 0




and,




• • •

• • 0

• 0 0




.

For the above patterns, it is the case that |V(α)| = 3. For any other pattern

γ ∈ P it is the case that dim(C(V (γ))) − dim(V (γ)) ≤ 1. The reader can verify

this by applying Theorem 16 to any pattern in question. However, there is an easier

way to see this using the language we used in Chapter II to motivate Theorem 16.
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The reader should note that each of these patterns has at most one “corner”. These

patterns are:




0 0 0

0 0 0

0 0 0




,




• 0 0

• 0 0

• 0 0




,




• • •

0 0 0

0 0 0




,




• • •

• 0 0

• 0 0




,




• • 0

• • 0

• • 0




,




• • •

• • •

0 0 0




,




• • •

• • 0

• • 0




,




• • •

• • •

• 0 0




,




• • •

• • •

• • 0




and,




• • •

• • •

• • •




.

Thus, when p = 3, there are 60 doubly-invariant subspaces of M. That

concludes the results for the case p = 3.
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CHAPTER VI

THE RESULTS FOR THE PRIME 5

The total results for the case when p = 5 are not even close to being completed in

this thesis. The case p = 5 is a much more difficult and computationally intensive

case than when our prime was 2 or 3. However, this means that it is also much more

interesting. In particular, we will start to see some behavior which gives us an idea

about when the centralizer of a subspace will get larger and when it will not. While

such ideas are not yet formalized, they are mentioned as a starting point for further

research beyond this thesis.

When our prime was 2, the only interesting pattern was


• 0

0 0


 .

When our prime was 3, the only interesting patterns were



• 0 0

0 0 0

0 0 0




and




• • 0

• 0 0

0 0 0




.

The common theme among these patterns is that they contain “waves” of dots filling

up the “anti-diagonals” up to but not including the main anti-diagonal. Since p = 5

has been much too large to do completely, we need to focus on a few particularly
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interesting patterns. Following the above examples, it seems like the patterns to

focus on are the following:




• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,




• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,




• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and,




• • • • 0

• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0




.

This chapter is long and only the first of the above patterns has been inves-

tigated completely. Because of this, the content of this chapter has been broken into

sections on the basis of the pattern being considered. Each section has an introduc-

tory paragraph which gives the reader an idea of how the results are organized.

6.1 The First Wave Pattern

This pattern is the only straightforward pattern in Chapter VI. It does not contain

multiple cases which must be considered separately. We shall simply iterate our

algorithm for computing doubly-invariant spaces four times.
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We begin with the pattern

α1 =




• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

We want to list the subspaces in the set V(α1). To this end write B0 = E(α1) and

V0 = V (α1) = 〈B0〉. Theorem 16 from Chapter II demonstrates that C(V0) = V (β1)

where

β1 =




• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Write B′
0 = E(β1) and note that V (β1) = 〈B′

0〉. Since dim(C(V0)) − dim(V0) = 2,

we must choose a matrix m1 ∈ C(V0) − V0 such that for each point (i, j) ∈ U , if

ei,j ∈ 〈V0,m1〉, then ei,j ∈ V0. Hence, we want the 1-dimensional good subspaces of

Z5 × Z5. From the construction of such spaces in Chapter III, we know that such

subspaces are generated by vectors of the form (1, c1) where c1 6= 0. Fix a non-zero
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scalar c1 ∈ Z5 and define

m1 =




0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

B1 = B0 ∪ {m1}, and V1 = 〈B1〉. Note that B1 is a basis for the subspace V1 that

satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has form

x =




x0,0 x0,1 x0,2 0 0

x1,0 x1,1 0 0 0

x2,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 0 0 0

x2,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 0 0 0

x1,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x1,1 = c1 · x2,0

and that ∂2(x) ∈ V1 if and only if

x0,2 = c1 · x1,1.

Hence, x ∈ C(V1) if and only if

x1,1 = c1 · x2,0

x0,2 = c1 · x1,1 = c2
1 · x2,0.

Therefore, we define

v1 =




0 0 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and B′
1 = B′

0 ∪ {v1} and note that C(V1) = 〈B′
1〉. Since dim(C(V1)) − dim(V1) = 2,

we must choose a matrix m2 ∈ C(V1) − V1 such that for each point (i, j) ∈ U , if

ei,j ∈ 〈V1,m2〉, then ei,j ∈ V1. If the (1,0)-entry of m2 is non-zero, we can subtract

off appropriate multiples of m1 to obtain a new matrix whose (1,0)-entry is 0. We

may do this since the (1,0)-entry of m1 is 1. Hence, we may assume without loss of

generality that the (1,0)-entry of m2 is 0. Consider the expansion of m2 with respect

to the basis B′
1. If the coefficient on v1 in the expansion of m2 is 0, then the only
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non-zero entry of m2 is the (0,1)-entry. However, that would mean e0,1 ∈ 〈V1,m2〉

even though e0,1 /∈ V1. Thus, the coefficient on v1 in the expansion of m2 must be

non-zero. Since we may scale the coefficient on v1, we shall choose said coefficient to

be 1. Hence, we fix c2 ∈ Z5 and define the matrix

m2 =




0 c2 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

B2 = B1 ∪ {m2}, and V2 = 〈B2〉. Note that we may have c2 = 0 without worrying

about having a standard basis vector in our span. Note that B2 is a basis for the

subspace V2 that satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 0

x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0




.
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Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 0 0

x1,1 x1,2 0 0 0

x2,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x2,1 = c1 · x3,0

x1,2 = c2
1 · x3,0

x1,1 = c1 · x2,0 + c2 · x3,0

and that ∂2(x) ∈ V2 if and only if

x1,2 = c1 · x2,1

x0,3 = c2
1 · x2,1

x0,2 = c1 · x1,1 + c2 · x2,1.

Hence, x ∈ C(V2) if and only if

x1,1 = c1 · x2,0 + c2 · x3,0

x2,1 = c1 · x3,0

x1,2 = c2
1 · x3,0

x0,3 = c2
1 · x2,1 = c3

1 · x3,0

x0,2 = c1 · x1,1 + c2 · x2,1 = c2
1 · x2,0 + c1c2 · x3,0 + c1c2 · x3,0 = c2

1 · x2,0 + 2c1c2 · x3,0.
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Therefore, we define

v2 =




0 0 2c1c2 c3
1 0

0 c2 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




,

and B′
2 = B′

1∪{v2} and note that C(V2) = 〈B′
2〉. Since dim(C(V2))−dim(V2) = 2, we

must choose a matrix m3 ∈ C(V2)−V2 such that for each (i, j) ∈ U , if ei,j ∈ 〈V2,m3〉,

then ei,j ∈ V2. Similar to how we argued above, we may assume without loss of

generality that the (1,0)-entry and the (2,0)-entry of m3 are 0. Consider the expansion

of m3 with respect to the basis B′
2. Note that the coefficient on v1 in the expansion of

m3 is 0 since we have assumed that the (2,0)-entry of m3 is 0. Hence, if the coefficient

on v2 in the expansion of m3 is 0, then this would mean that e0,1 ∈ 〈V2,m3〉 even

though e0,1 /∈ V2. Thus, the coefficient on v2 in the expansion of m3 must be non-

zero. Since we may scale the coefficient on v2, we shall choose said coefficient to be

1. Hence, we fix c3 ∈ Z5 and define the matrix

m3 =




0 c3 2c1c2 c3
1 0

0 c2 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




,
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B3 = B2 ∪ {m3}, and V3 = 〈B3〉. Note that we may have c3 = 0 without worrying

about having a standard basis vector in our span. Note that B3 is a basis for the

subspace V3 that satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x3,1 = c1 · x4,0

x2,2 = c2
1 · x4,0

x1,3 = c3
1 · x4,0

x2,1 = c1 · x3,0 + c2 · x4,0

x1,2 = c2
1 · x3,0 + 2c1c2 · x4,0

x1,1 = c1 · x2,0 + c2 · x3,0 + c3 · x4,0

and that ∂2(x) ∈ V3 if and only if

x2,2 = c1 · x3,1

x1,3 = c2
1 · x3,1

x0,4 = c3
1 · x3,1

x1,2 = c1 · x2,1 + c2 · x3,1

x0,3 = c2
1 · x2,1 + 2c1c2 · x3,1

x0,2 = c1 · x1,1 + c2 · x2,1 + c3 · x3,1.
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Hence, x ∈ C(V3) if and only if

x3,1 = c1 · x4,0

x2,2 = c2
1 · x4,0

x1,3 = c3
1 · x4,0

x0,4 = c3
1 · x3,1 = c4

1 · x4,0

x1,2 = c1 · x2,1 + c2 · x3,1 = c2
1 · x3,0 + c1c2 · x4,0 + c1c2 · x4,0 = c2

1 · x3,0 + 2c1c2 · x4,0

x0,3 = c2
1 · x2,1 + 2c1c2 · x3,1 = c2

1(c1 · x3,0 + c2 · x4,0) + 2c1c2(c1 · x4,0)

= c3
1 · x3,0 + 3c2

1c2 · x4,0

x0,2 = c1 · x1,1 + c2 · x2,1 + c3 · x3,1

= c1(c1 · x2,0 + c2 · x3,0 + c3 · x4,0) + c2(c1 · x3,0 + c2 · x4,0) + c3(c1 · x4,0)

= c2
1 · x2,0 + 2c1c2 · x3,0 + (2c1c3 + c2

2) · x4,0.

Therefore, we define

v3 =




0 0 2c1c3 + c2
2 3c2

1c2 c4
1

0 c3 2c1c2 c3
1 0

0 c2 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0




and B′
3 = B′

2∪{v3} and note that C(V3) = 〈B′
3〉. Since dim(C(V3))−dim(V3) = 2, we

must choose a matrix m4 ∈ C(V3)−V3 such that for each (i, j) ∈ U , if ei,j ∈ 〈V3,m4〉,

then ei,j ∈ V3. Similar to how we argued above, we assume without loss of generality
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that the (1,0)-entry, the (2,0)-entry, and the (3,0)-entry of m4 are 0. Consider the

expansion of m4 with respect to the basis B′
3. Note that the coefficient on v1 in the

expansion of m4 is 0 since we have assumed that the (2,0)-entry of m4 is 0. Similarly,

the coefficient on v2 in the expansion of m4 is also 0. Hence, if the coefficient on v3

in the expansion of m4 is 0, then this would mean that e0,1 ∈ 〈V3, m4〉 even though

e0,1 /∈ V3. Thus, the coefficient on v3 in the expansion of m4 must be non-zero. Since

we may scale the coefficient on v3, we shall choose said coefficient to be 1. Hence, we

fix c4 ∈ Z5 and define the matrix

m4 =




0 c4 2c1c3 + c2
2 3c2

1c2 c4
1

0 c3 2c1c2 c3
1 0

0 c2 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0




,

B4 = B3 ∪ {m4}, and V4 = 〈B4〉. Note that we may have c4 = 0 without worrying

about having a standard basis vector in our span. Note that B4 is a basis for the

subspace V4 that satisfies the hypotheses of Lemma 7 in Chapter III.

Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each
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element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Suppose ∂1(x) ∈ V4, and consider the expansion of ∂1(x) with respect to the basis

B4. By Lemma 7 in Chapter III the coefficient on m4 in the expansion of ∂1(x)

must be 0. This would imply that x4,1 = x3,2 = x2,3 = x1,4 = 0. Further, the

representations of the other entries do not change since the coefficient on m4 is 0 in

the expansions of both ∂1(x) and ∂2(x). Hence, C(V4) = C(V3), which implies that

dim(C(V4))−dim(V4) = 1 and the algorithm terminates. The results are summarized

in table 6.1.

Note that with each new matrix we added to our basis, our centralizers grow.

More precisely, for each i ∈ {0, 1, 2} it is the case that dim(C(Vi)) < dim(C(Vi+1)).

Also, note that each mi has leading non-zero anti-diagonal has entries which form a
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Table 6.1: Results For The Pattern α1

ht(α1) |V(α1)0| |V(α1)1| |V(α1)2| |V(α1)3| |V(α1)4| |V(α1)|

4 1 4 20 100 500 625

geometric sequence, since the first entry is 1, the second is c1, and the third is c2
1. In

general, the nth entry was cn−1
1 . This theme will repeat itself.

The reader should recall that if some subspace Vi ∈ V satisfies the condition

dim(C(Vi))− dim(Vi) ≥ 2, then we choose some matrix m ∈ C(Vi)− Vi and consider

the subspace Vi+1 = 〈Vi,m〉. Up to this point we have argued somewhat extensively

for the particular nature of the matrix m. Since these arguments have now been made

numerous times and are not difficult to understand, said arguments will be omitted

in future investigations and m will be defined with little comment.

6.2 The Second Wave Pattern

This pattern will not be fully explored. After one iteration of our algorithm, we

will define Case 1 and Case 2 since there are two different ways to define the matrix

m1. Case 1 will be further subdivided into Case 1.1 and Case 1.2 on the basis of a

possible relationship between the entries of the matrix m1. After one iteration of our

algorithm for Cases 1.2 and 2, we will be able to treat them simultaneously. Hence,

we will combine them into a single case, which we will call Case 3. Case 3 will then

be subdivided into Case 3.1 and Case 3.2 since there will be two different ways to

67



define the matrix m4. After one iteration of our algorithm for Case 3.1 and Case 3.2

we will cease investigating them. We will then return to Case 1.1 and perform one

more iteration of our algorithm for it.

We define the pattern

α2 =




• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and write V0 = V (α2). Clearly, C(V0) = V (β2) where

β2 =




• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Thus we want the one-dimensional good subspaces of Z5 × Z5 × Z5. There are two

types of vectors which produce this. The first is (1, c1, c2) where (c1, c2) 6= (0, 0). The

second has the form (0, 1, c1) where c1 6= 0. Hence, we break our investigation into

two cases.
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Case 1: Fix c1, c2 ∈ Z5 such that (c1, c2) 6= (0, 0) and define

m1 =




0 0 c2 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 0

x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 0 0

x1,1 x1,2 0 0 0

x2,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x2,1 = c1 · x3,0

x1,2 = c2 · x3,0,

and that ∂2(x) ∈ V1 if and only if

x1,2 = c1 · x2,1

x0,3 = c2 · x2,1.

Hence, x ∈ C(V1) if and only if

x2,1 = c1 · x3,0

x1,2 = c2 · x3,0 = c1 · x2,1 = c2
1 · x3,0

x0,3 = c2 · x2,1 = c1c2 · x3,0.

Note that the second equation implies that (c2
1 − c2) · x3,0 = 0. Thus, we have two

subcases: either c2
1 = c2 or c2

1 6= c2.

Case 1.1: Suppose that c2
1 = c2. Hence we have

x2,1 = c1 · x3,0

x1,2 = c2 · x3,0 = c1 · x2,1 = c2
1 · x3,0

x0,3 = c2 · x2,1 = c1c2 · x3,0 = c3
1 · x3,0.
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Thus, we define

v1 =




0 0 0 c3
1 0

0 0 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




and note that C(V1) = 〈V0, v1〉. We shall return to this case later.

Case 1.2: Suppose c2
1 6= c2. Then we must have x3,0 = 0. This implies that

x2,1 = x1,2 = x0,3 = 0. Hence, if x ∈ C(V1), then x ∈ C(V0). This yields that

C(V1) = C(V0), and so dim(C(V1)) − dim(V1) = 2. Therefore, we are interested in

the two-dimensional good subspaces of Z5 × Z5 × Z5 and will compute them later.

Case 2: Fix a non-zero scalar c1 ∈ Z5 and define

m1 =




0 0 c1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each
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element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 0

x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 0 0

x1,1 x1,2 0 0 0

x2,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x3,0 = 0

x1,2 = c1 · x2,1,

and that ∂2(x) ∈ V1 if and only if

x2,1 = 0

x0,3 = c1 · x1,2.
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Hence, x ∈ C(V1) if and only if

x3,0 = 0

x2,1 = 0

x1,2 = c1 · x2,1 = 0

x0,3 = c1 · x1,2 = 0.

Hence, C(V1) = C(V0) which yields that dim(C(V1)) − dim(V1) = 2. Therefore, we

are interested in the two-dimensional good subspaces of Z5 × Z5 × Z5.

Note that Case 1.2 and Case 2 ended in the same conclusion. We shall

combine these into a single case, which we call Case 3.

Case 3: We want the two-dimensional good subspaces of Z5×Z5×Z5. These

are spanned by a set of two vectors which have the forms (1, 0, c3) and (0, 1, c4) where

c3, c4 6= 0. To this end fix non-zero scalars c3, c4 ∈ Z5 and define

m2 =




0 0 c3 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, m3 =




0 0 c4 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and V2 = 〈V0,m2,m3〉.

We shall now compute the centralizer of V2. By Lemma 14 in Chapter II,
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each element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 0

x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 0 0

x2,0 x2,1 0 0 0

x3,0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 0 0

x1,1 x1,2 0 0 0

x2,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x1,2 = c3 · x3,0 + c4 · x2,1,

and that ∂2(x) ∈ V2 if and only if

x0,3 = c3 · x2,1 + c4 · x1,2.

Hence, x ∈ C(V2) if and only if

x1,2 = c3 · x3,0 + c4 · x2,1

x0,3 = c3 · x2,1 + c4 · x1,2 = c3c4 · x3,0 + (c3 + c2
4) · x2,1.
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Hence, we define

v1 =




0 0 0 c3c4 0

0 0 c3 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




, and v2 =




0 0 0 c3 + c2
4 0

0 0 c4 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




.

It follows that C(V2) = 〈V (β2), v1, v2〉. Hence, dim(C(V2)) − dim(V2) = 3. Since

there are two matrices in our centralizer which dictate the entries on the fourth

antidiagonal, we have two choices regarding the construction of our next matrix.

Case 3.1: Fix c5 ∈ Z5 and define

m4 =




0 0 c5 c3 + c2
4 0

0 0 c4 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




and V3 = 〈V0,m2,m3,m4〉.

We shall now compute the centralizer of V3. By Lemma 14 in Chapter II,
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each element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x3,1

x4,0 = 0

x2,2 = c4 · x3,1

x1,3 = (c3 + c2
4) · x3,1,
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and that ∂2(x) ∈ V3 if and only if

x0,3 = c3 · x2,1 + c4 · x1,2 + c5 · x3,1

x3,1 = 0

x1,3 = c4 · x2,2

x0,4 = (c3 + c2
4) · x2,2.

Hence, x ∈ C(V3) if and only if

x4,0 = 0

x3,1 = 0

x2,2 = c4 · x3,1 = 0

x1,3 = (c3 + c2
4) · x3,1 = 0

x0,4 = (c3 + c2
4) · x2,2 = 0

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x3,1 = c3 · x3,0 + c4 · x2,1

x0,3 = c3 · x2,1 + c4 · x1,2 + c5 · x3,1 = c3 · x2,1 + c4 · x1,2

= c3 · x2,1 + c4(c3 · x3,0 + c4 · x2,1) = c3c4 · x3,0 + (c3 + c2
4) · x2,1.

Note that these are the same equations we obtained when we were investigating the

centralizer of V2. Thus, C(V3) = C(V2) and dim(C(V3))− dim(V3) = 2.
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Case 3.2: Fix scalars c5, c6 ∈ Z5 and define

m4 =




0 0 c5 c3c4 + c6(c3 + c2
4) 0

0 0 c3 + c4c6 0 0

0 c6 0 0 0

1 0 0 0 0

0 0 0 0 0




and V3 = 〈V0,m2,m3,m4〉. Note that this matrix is formed by multiplying an arbi-

trary scalar c6 by v2 and adding it to v1, except that we allow the (0,2)-entry to be

an arbitrary scalar c5 . It is clear that Cases 3.1 and 3.2 cover all possibilities for the

different forms that m4 can take.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.
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Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x4,0

x3,1 = c6 · x4,0

x2,2 = (c3 + c4c6) · x4,0

x1,3 = (c3c4 + c6(c3 + c2
4)) · x4,0,

and that ∂2(x) ∈ V3 if and only if

x0,3 = c3 · x2,1 + c4 · x1,2 + c5 · x3,1

x2,2 = c6 · x3,1

x1,3 = (c3 + c4c6) · x3,1

x0,4 = (c3c4 + c6(c3 + c2
4)) · x3,1.
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Hence, x ∈ C(V3) if and only if

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x4,0

x3,1 = c6 · x4,0

x2,2 = (c3 + c4c6) · x4,0

x2,2 = c6 · x3,1 = c2
6 · x4,0

x1,3 = (c3c4 + c6(c3 + c2
4)) · x4,0

x1,3 = (c3 + c4c6) · x3,1 = c6(c3 + c4c6) · x4,0

x0,4 = (c3c4 + c6(c3 + c2
4)) · x3,1 = c6(c3c4 + c6(c3 + c2

4)) · x4,0

x0,3 = c3 · x2,1 + c4 · x1,2 + c5 · x3,1

= c3 · x2,1 + c4(c3 · x3,0 + c4 · x2,1 + c5 · x4,0) + c5c6 · x4,0

= c3c4 · x3,0 + (c3 + c2
4) · x2,1 + c5(c4 + c6)x4,0.

Note that each of x2,2 and x1,3 has two representations. This yields the following

equations:

0 = (c2
6 − (c3 + c4c6)) · x4,0

0 = (c6(c3 + c4c6)− (c3c4 + c6(c3 + c2
4))) · x4,0.

Observe that if either c2
6 6= (c3 + c4c6) or c6(c3 + c4c6) 6= (c3c4 + c6(c3 + c2

4)), then
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x4,0 = 0. Note that if x4,0 = 0, then we have:

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x4,0 = c3 · x3,0 + c4 · x2,1

x3,1 = c6 · x4,0 = 0

x2,2 = (c3 + c4c6) · x4,0 = 0

x1,3 = (c3c4 + c6(c3 + c2
4)) · x4,0 = 0

x0,4 = c6(c3c4 + c6(c3 + c2
4)) · x4,0 = 0

x0,3 = c3c4 · x3,0 + (c3 + c2
4) · x2,1 + c5(c4 + c6)x4,0 = c3c4 · x3,0 + (c3 + c2

4) · x2,1.

Note that these are these same equations we obtained when we examined the cen-

tralizer of V2. This implies that C(V3) = C(V2) and dim(C(V3))− dim(V3) = 2. Now

suppose that c2
6 = (c3 + c4c6) and c6(c3 + c4c6) = (c3c4 + c6(c3 + c2

4)). Note that this

would mean that the constants on the 4th anti-diagonal of m4 would be geometric.

Further, we have

c6(c3 + c4c6) = c3
6

c6(c3c4 + c6(c3 + c2
4)) = c2

6(c3 + c4c6) = c4
6.
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These equations then imply

x1,2 = c3 · x3,0 + c4 · x2,1 + c5 · x4,0

x3,1 = c6 · x4,0

x2,2 = (c3 + c4c6) · x4,0 = c2
6 · x4,0

x1,3 = (c3c4 + c6(c3 + c2
4)) · x4,0 = c3

6 · x4,0

x0,4 = c6(c3c4 + c6(c3 + c2
4)) · x4,0 = c4

6 · x4,0

x0,3 = c3c4 · x3,0 + (c3 + c2
4) · x2,1 + c5(c4 + c6)x4,0.

We define

v3 =




0 0 0 c5(c4 + c6) c4
6

0 0 c5 c3
6 0

0 1 c2
6 0 0

0 c6 0 0 0

1 0 0 0 0




and note that C(V3) = 〈V (β2), v1, v2, v3〉. Notice once again that the entries on

the anti-diagonal form a geometric sequence. This is as far as this case has been

investigated. We shall now go back to Case 1.1.
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Case 1.1: Recall that V1 = 〈V0,m1〉 and C(V1) = 〈V (β2), v1〉 where

m1 =




0 0 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and v1 =




0 0 0 c3
1 0

0 0 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




.

Recall also that dim(C(V1)) − dim(V1) = 3. Hence, we must define a new matrix

m2 ∈ C(V1)− V1 and consider V2 = 〈V1,m2〉. In Case 3, we examined what happens

when the (2,0)-entry, the (1,1)-entry, and the (0,2)-entry are the only non-zero entries

m1 and m2. Hence, to avoid repetition of earlier cases, the coefficient on v1 in the

expansion of m2 must be nonnegative. To this end, fix c3, c4 ∈ Z5, we define

m2 =




0 0 c4 c3
1 0

0 c3 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m1,m2〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each
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element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x2,1 = c1 · x3,0 + c3 · x4,0

x1,2 = c2
1 · x3,0 + c4 · x4,0

x3,1 = c1 · x4,0

x2,2 = c2
1 · x4,0

x1,3 = c3
1 · x4,0,
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and that ∂2(x) ∈ V2 if and only if

x1,2 = c1 · x2,1 + c3 · x3,1

x0,3 = c2
1 · x2,1 + c4 · x3,1

x2,2 = c1 · x3,1

x1,3 = c2
1 · x3,1

x0,4 = c3
1 · x3,1.

Hence, x ∈ C(V2) if and only if

x2,1 = c1 · x3,0 + c3 · x4,0

x3,1 = c1 · x4,0

x1,2 = c2
1 · x3,0 + c4 · x4,0

x1,2 = c1 · x2,1 + c3 · x3,1

= c1(c1 · x3,0 + c3 · x4,0) + c1c3 · x4,0

= c2
1 · x3,0 + 2c1c3 · x4,0

x0,3 = c2
1 · x2,1 + c4 · x3,1

= c2
1(c1 · x3,0 + c3 · x4,0) + c1c4 · x4,0

= c3
1 · x3,0 + (c2

1c3 + c1c4)x4,0

x2,2 = c1 · x3,1 = c2
1 · x4,0

x1,3 = c2
1 · x3,1 = c3

1 · x4,0

x0,4 = c3
1 · x3,1 = c4

1 · x4,0.
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Note that the third and fourth of the above equations give us the equation (c4 −

2c1c3)x4,0 = 0. In the case where c4 6= 2c1c3 we have that x4,0 = 0. This would give

us the following equations:

x2,1 = c1 · x3,0 + c3 · x4,0 = c1 · x3,0

x1,2 = c2
1 · x3,0 + c4 · x4,0 = c2

1 · x3,0

x0,3 = c3
1 · x3,0 + (c2

1c3 + c1c4)x4,0 = c3
1 · x3,0

x3,1 = c1 · x4,0 = 0

x2,2 = c2
1 · x4,0 = 0

x1,3 = c3
1 · x4,0 = 0

x0,4 = c4
1 · x4,0 = 0.

Note that these are the same equations which we obtained when we examined the

centralizer of V1. This would imply that C(V2) = C(V1) and dim(C(V2))−dim(V2) =

2.
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In case c4 = 2c1c3, we have the following equations:

x2,1 = c1 · x3,0 + c3 · x4,0

x1,2 = c2
1 · x3,0 + c4 · x4,0

x0,3 = c3
1 · x3,0 + (c2

1c3 + c1c4)x4,0

= c3
1 · x3,0 + (c2

1c3 + 2c2
1c3)x4,0

= c3
1 · x3,0 + 3c2

1c3 · x4,0

x3,1 = c1 · x4,0

x2,2 = c2
1 · x4,0

x1,3 = c3
1 · x4,0

x0,4 = c4
1 · x4,0.

Thus, we define

v2 =




0 0 0 3c2
1c3 c4

1

0 0 c4 c3
1 0

0 c3 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0




,

and note that C(V2) = 〈V (β2), v1, v2〉. Notice once again that the entries on the anti-

diagonal form a geometric sequence. This is a theme we will see again when examining

the next pattern. However, in the final pattern, there will be an interesting twist.

This is as far as the present pattern has been investigated.
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6.3 The Third Wave Pattern

This pattern will not be fully explored. After one iteration of our algorithm, we

will define Case 1, Case 2, and Case 3 since there will be three different ways to

define the matrix m1. Case 1 will be further subdivided into Case 1.1 and Case 1.2

on the basis of a possible relationship between the entries of the matrix m1. We

shall iterate our algorithm once for Case 1.2 and then cease investigating it. After

one iteration of our algorithm for Cases 1.1, 2, and 3, we will be able to treat them

simultaneously. Hence, we will combine them into a single case, which we will call

Case 4. Case 4 will then be subdivided into Case 4.1, Case 4.2, and Case 4.3 since

there will be three different ways to define the matrices m2 and m3. Case 4.1 will

further be subdivided into Case 4.1.1, Case 4.1.2, Case 4.1.3, and Case 4.1.4 due to

different possible relationships among the coefficients of m2 and m3. We shall iterate

our algorithm once on Cases 4.1.1 through 4.1.4, Case 4.2, and Case 4.3 and then

cease investigating them. Case 5 will be derived from a subset of the subcases of

Case 4. Case 5 shall be subdivided into Case 5.1, Case 5.2, and Case 5.3 due to the

different ways one will be able to define the matrix m7. To illustrate some of the

recurring themes of these results, after we iterate our algorithm once on Cases 5.1

through 5.3, we will examine “similar looking” subspaces under the assumption that

p = 7. Investigation of this pattern will cease after this.
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We define the pattern

α3 =




• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and write V0 = V (α3). Clearly, C(V ) = V (β3) where

β3 =




• • • • 0

• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0




.

Case 1: Fix scalars c1, c2, c3 ∈ Z5 such that (c1, c2, c3) 6= (0, 0, 0) and define

m1 =




0 0 0 c3 0

0 0 c2 0 0

0 c1 0 0 0

1 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.
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Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x3,1 = c1 · x4,0

x2,2 = c2 · x4,0

x1,3 = c3 · x4,0,

and that ∂2(x) ∈ V1 if and only if

x2,2 = c1 · x3,1

x1,3 = c2 · x3,1

x0,4 = c3 · x3,1.
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Hence, x ∈ C(V1) if and only if

x3,1 = c1 · x4,0

x2,2 = c2 · x4,0 = c1 · x3,1 = c2
1 · x4,0

x1,3 = c3 · x4,0 = c2 · x3,1 = c1c2 · x4,0

x0,4 = c3 · x3,1.

Note that the above equations imply the following equations:

(c2 − c2
1)x4,0 = 0

(c3 − c1c2)x4,0 = 0.

Thus we see that if either c2 6= c2
1 or c3 6= c1c2 then it must be the case that x4,0 = 0.

This would then imply that x4,0 = x3,1 = x2,2 = x1,3 = x0,4 = 0 and C(V1) = C(V0).

This would further imply that dim(C(V1)) − dim(V1) = 3. This will be regarded as

Case 1.1 and shall be investigated later in the thesis.

However, if c2 = c2
1 and c3 = c1c2, then we have that c3 = c1c2 = c1c

2
1 = c3

1

and

x3,1 = c1 · x4,0

x2,2 = c2
1 · x4,0

x1,3 = c3
1 · x4,0

x0,4 = c3 · x3,1 = c3
1c1 · x4,0 = c4

1 · x4,0.
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Thus, we define

v1 =




0 0 0 0 c4
1

0 0 0 c3
1 0

0 0 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0




,

and note that C(V1) = 〈V (β3), v1〉. This shall be regarded as Case 1.2.

Case 1.2: We must add another matrix to our current span. Later on we

shall consider the case where our new matrix contains non-zero entries only on the

fourth anti-diagonal. Hence, we shall make use of v1 in forming our new matrix. To

this end, fix c4, c5, c6 ∈ Z5 and define

m2 =




0 0 0 c6 c4
1

0 0 c5 c3
1 0

0 c4 c2
1 0 0

0 c1 0 0 0

1 0 0 0 0




,

and V2 = 〈V1,m2〉.

We shall now compute the centralizer of V2. By Lemma 14 in Chapter II,
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each element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x3,1 = c1 · x4,0

x2,2 = c2 · x4,0

x1,3 = c3 · x4,0

x4,1 = x3,2 = x2,3 = x1,4 = 0,
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and that ∂2(x) ∈ V2 if and only if

x2,2 = c1 · x3,1 + c4 · x4,1 = c1 · x3,1

x1,3 = c2 · x3,1 + c5 · x4,1 = c2 · x3,1

x0,4 = c3 · x3,1 + c6 · x4,1 = c3 · x3,1

x3,2 = c1 · x4,1 = 0

x2,3 = c2
1 · x4,1 = 0

x3,2 = c3
1 · x4,1 = 0

0 = c4
1 · x4,1.

Note that these are the same equations we obtained when we computed the centralizer

of V1. Thus, C(V2) = C(V1) and dim(C(V2))− dim(V2) = 3. Note that even though

m2 has anti-diagonal entries which form a geometric sequence, it is still the case that

C(V2) = C(V1). This is due to the fact that the coefficient on m2 in the expansion

of ∂1(x) is 0 since the (4,0)-entry of m2 is non-zero. Keep this in mind as this theme

will repeat itself. This is as far as Case 1.2 has been taken.

Case 2: Fix c1, c2 ∈ Z5 such that (c1, c2) 6= (0, 0) and define

m1 =




0 0 0 c2 0

0 0 c1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.
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We shall now compute the centralizer of V1. By Lemma 14 in Chapter II,

each element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x4,0 = 0

x2,2 = c1 · x3,1

x1,3 = c2 · x3,1,

and that ∂2(x) ∈ V1 if and only if

x3,1 = 0

x1,3 = c1 · x2,2

x0,4 = c2 · x2,2.
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Hence, x ∈ C(V1) if and only if

x4,0 = 0

x3,1 = 0

x2,2 = c1 · x3,1 = 0

x1,3 = c2 · x3,1 = 0

x0,4 = c2 · x2,2 = 0.

Thus, C(V1) = C(V0) which implies dim(C(V1)) − dim(V1) = 3. We shall return to

this case later in the thesis.

Case 3: Fix a non-zero scalar c1 ∈ Z5 and define

m1 =




0 0 0 c1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each
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element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x4,0 = 0

x3,1 = 0

x1,3 = c1 · x2,2,

and that ∂2(x) ∈ V1 if and only if

x3,1 = 0

x2,2 = 0

x0,4 = c1 · x1,3.
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Hence, x ∈ C(V1) if and only if

x4,0 = 0

x3,1 = 0

x2,2 = 0

x1,3 = c1 · x2,2 = 0

x0,4 = c1 · x1,3 = 0.

Thus, C(V1) = C(V0) and dim(C(V1))− dim(V1) = 3.

Notice that Cases 2, 3, and 1.1 all end the same way. Namely, C(V1) = C(V0).

Keep these results in mind as they represent a theme we will see throughout this

thesis. In any event we shall regard these cases as a single case, Case 4.

Case 4: We now seek the 2-dimensional good subspaces of Zp×Zp×Zp×Zp.

There are three different ways we can do this depending on what our set of leading

positions is. That is, our set of leading positions can either be {1, 2}, {1, 3}, or {2, 3}.

As such, we have three subcases to consider.

Case 4.1: Suppose that our set of leading positions is {1, 2}, fix c4, c5, c6, c7 ∈

Z5 such that (c4, c5) 6= (0, 0) and (c6, c7) 6= (0, 0), and define

m2 =




0 0 0 c5 0

0 0 c4 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




and m3 =




0 0 0 c7 0

0 0 c6 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0



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and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x2,2 = c4 · x4,0 + c6 · x3,1

x1,3 = c5 · x4,0 + c7 · x3,1,

and that ∂2(x) ∈ V2 if and only if

x1,3 = c4 · x3,1 + c6 · x2,2

x0,4 = c5 · x3,1 + c7 · x2,2.
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Hence, x ∈ C(V2) if and only if

x2,2 = c4 · x4,0 + c6 · x3,1

x1,3 = c5 · x4,0 + c7 · x3,1 = c4 · x3,1 + c6 · x2,2

= c4 · x3,1 + c6(c4 · x4,0 + c6 · x3,1) = (c4 + c2
6)x3,1 + c4c6x4,0

x0,4 = c5 · x3,1 + c7 · x2,2 = c5 · x3,1 + c7(c4 · x4,0 + c6 · x3,1)

= (c5 + c6c7)x3,1 + c4c7 · x4,0.

Note that the above equations imply the following equation:

(c5 − c4c6) · x4,0 + (c7 − (c4 + c2
6)) · x3,1 = 0.

This leads to four more subcases of Case 4.1.

Case 4.1.1: Suppose that c5 = c4c6 and c7 = (c4 + c2
6). Then

x2,2 = c4 · x4,0 + c6 · x3,1

x1,3 = c4c6x4,0 + (c4 + c2
6)x3,1

x0,4 = c4c7 · x4,0 + (c5 + c6c7)x3,1

= c4(c4 + c2
6)x4,0 + (c4c6 + c6(c4 + c2

6))x3,1

= c4(c4 + c2
6)x4,0 + (2c4c6 + c3

6)x3,1.
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Hence, we define,

v1 =




0 0 0 0 c4c7

0 0 0 c4c6 0

0 0 c4 0 0

0 0 0 0 0

1 0 0 0 0




and v2 =




0 0 0 0 c4c6 + c5 + c3
6

0 0 0 c4 + c2
6 0

0 0 c6 0 0

0 1 0 0 0

0 0 0 0 0




,

and note that C(V2) = 〈V (β3), v1, v2〉 and dim(C(V2))− dim(V2) = 4.

Case 4.1.2: Now c5 = c4c6 but c7 6= (c4 + c2
6). This implies that

(c5 − c4c6) · x4,0 + (c7 − (c4 + c2
6)) · x3,1 = (c7 − (c4 + c2

6) · x3,1 = 0.

This further implies that x3,1 = 0. Hence, we now have the following equations:

x2,2 = c4 · x4,0 + c6 · x3,1 = c4 · x4,0

x1,3 = (c4 + c2
6)x3,1 + c4c6x4,0 = c4c6 · x4,0

x0,4 = (c5 + c6c7)x3,1 + c4c7 · x4,0 = c4c7 · x4,0.

Hence, C(V2) = 〈V (β3), v1〉 where v1 is the matrix from Case 4.1.1. Also note that

dim(C(V2))− dim(V2) = 3.

Case 4.1.3: Now assume c5 6= c4c6 but c7 = (c4 + c2
6). This implies that

(c5 − c4c6) · x4,0 + (c7 − (c4 + c2
6)) · x3,1 = (c5 − c4c6) · x4,0 = 0.
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This further implies that x4,0 = 0. Hence, we now have the following:

x2,2 = c4 · x4,0 + c6 · x3,1 = c6 · x3,1

x1,3 = (c4 + c2
6)x3,1 + c4c6x4,0 = (c4 + c2

6)x3,1

x0,4 = (c5 + c6c7)x3,1 + c4c7 · x4,0 = (c5 + c6c7)x3,1

= (c5 + c6(c4 + c2
6))x3,1 = (c4c6 + c5 + c3

6)x3,1.

Hence, C(V2) = 〈V (β3), v2〉 where v2 is the matrix from Case 4.1.1. Also note that

dim(C(V2))− dim(V2) = 3.

Case 4.1.4: Now assume that c5 6= c4c6 and c7 6= (c4 + c2
6). In this case, since

we have

(c5 − c4c6) · x4,0 + (c7 − (c4 + c2
6)) · x3,1 = 0,

we can explicitly solve for x3,1 in terms of x4,0. For simplicity of presentation, we

define d = c5−c4c6
(c4+c26)−c7

and obtain

x3,1 = d · x4,0

x2,2 = (c4 + c6d) · x4,0

x1,3 = (c4 + c2
6)x3,1 + c4c6x4,0 = (c4c6 + (c4 + c2

6)d) · x4,0

x0,4 = (c5 + c6c7)x3,1 + c4c7 · x4,0 = (c4c7 + (c5 + c6c7)d) · x4,0.

102



We now define

v1 =




0 0 0 0 c4c7 + (c5 + c6c7)d

0 0 0 c4c6 + (c4 + c2
6)d 0

0 0 c4 + c6d 0 0

0 d 0 0 0

1 0 0 0 0




,

and note that C(V2) = 〈V (β3), v1〉 and dim(C(V2)) − dim(V2) = 3. This is as far as

this case has been explored.

Case 4.2: Suppose that our set of leading positions is {1, 3} and fix c4, c5, c6 ∈

Z5 such that (c4, c5) 6= (0, 0) and c6 6= 0. We define

m2 =




0 0 0 c5 0

0 0 0 0 0

0 c4 0 0 0

1 0 0 0 0

0 0 0 0 0




and m3 =




0 0 0 c6 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m1,m2〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each
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element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x3,1 = c4 · x4,0

x1,3 = c5 · x4,0 + c6 · x2,2,

and that ∂2(x) ∈ V2 if and only if

x2,2 = c4 · x3,1

x0,4 = c5 · x3,1 + c6 · x1,3.
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Hence, x ∈ C(V2) if and only if

x3,1 = c4 · x4,0

x2,2 = c4 · x3,1 = c2
4 · x4,0

x1,3 = c5 · x4,0 + c6 · x2,2 = (c5 + c2
4c6)x4,0

x0,4 = c5 · x3,1 + c6 · x1,3 = (c4c5 + c6(c5 + c2
4c6))x4,0.

Thus, we define

v1 =




0 0 0 0 c4c5 + c6(c5 + c2
4c6)

0 0 0 c5 + c2
4c6 0

0 0 c2
4 0 0

0 c4 0 0 0

1 0 0 0 0




,

and note that C(V2) = 〈V (β3), v1〉 and dim(C(V2)) − dim(V2) = 3. This is as far as

this case has been examined.

Case 4.3: Suppose that our set of leading positions is {2, 3} and fix c4, c5 ∈ Z5

such that c4 6= 0 and c5 6= 0. We define

m2 =




0 0 0 c4 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




and m3 =




0 0 0 c5 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and write V2 = 〈V, m1,m2〉.
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Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x4,0 = 0

x1,3 = c4 · x3,1 + c5 · x2,2,

and that ∂2(x) ∈ V2 if and only if

x3,1 = 0

x0,4 = c4 · x2,2 + c5 · x1,3.
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Hence, x ∈ C(V2) if and only if

x4,0 = 0

x3,1 = 0

x1,3 = c4 · x3,1 + c5 · x2,2 = c5 · x2,2

x0,4 = c4 · x2,2 + c5 · x1,3 = c4 · x2,2 + c2
5 · x2,2 = (c4 + c2

5)x2,2.

Thus, we define

v1 =




0 0 0 0 c4 + c2
5

0 0 0 c5 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

and note that C(V2) = 〈V (β3), v1〉 and dim(C(V2)) − dim(V2) = 3. This is as far as

this case has been examined.

Case 5: We shall now investigate what occurs when we consider the three-

dimensional good subspaces of Z5 × Z5 × Z5 × Z5. Using Theorem 6 in Chapter III,

we know that there is only one form such spaces may take. To this end, fix non-zero
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scalars c8, c9, c10 ∈ Z5 and define

m4 =




0 0 0 c8 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




, m5 =




0 0 0 c9 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0




,

m6 =




0 0 0 c10 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and V3 = 〈V0,m4,m5,m6〉.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0




.
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Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 0

x2,0 x2,1 x2,2 0 0

x3,0 x3,1 0 0 0

x4,0 0 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 0 0

x2,1 x2,2 0 0 0

x3,1 0 0 0 0

0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2,

and that ∂2(x) ∈ V3 if and only if

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3.

Hence, x ∈ C(V3) if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3

= c8 · x3,1 + c9 · x2,2 + c10(c8 · x4,0 + c9 · x3,1 + c10 · x2,2)

= c8c10 · x4,0 + (c8 + c9c10)x3,1 + (c9 + c2
10)x2,2.
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Hence, we define

v2 =




0 0 0 0 c8c10

0 0 0 c8 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




, v3 =




0 0 0 0 c8 + c9c10

0 0 0 c9 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




,

and v4 =




0 0 0 0 c9 + c2
10

0 0 0 c10 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

and note that C(V3) = 〈V (β3), v2, v3, v4〉 and dim(C(V3))− dim(V3) = 4.

Here is where we will do something different from what we have done before.

We will still investigate what happens when we put a new matrix in our basis. How-

ever, afterward, we will do the same thing except under the assumption that p = 7.

There are two reasons for doing this. First, it will demonstrate that the centralizer

of a given subspace will be different depending on which prime is chosen if one has

a basis matrix with non-zero entries in the (p − 1)th row or the (p − 1)th column.

Second, it will once again show that if C(Vi) ⊂ C(Vi+1), then one has a basis matrix

whose leading anti-diagonal entries form a geometric sequence.

110



Case 5.1 (p = 5): Fix c11 ∈ Z5 and define

m7 =




0 0 0 c11 c9 + c2
10

0 0 0 c10 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

and V4 = 〈V0,m4,m5,m6,m7〉.

Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each

element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V4 if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c11 · x3,2

x4,1 = 0

x2,3 = c10 · x3,2

x1,4 = (c9 + c2
10)x3,2,

and that ∂2(x) ∈ V4 if and only if

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3 + c11 · x2,3

x3,2 = 0

x1,4 = c10 · x2,3

0 = (c9 + c2
10)x2,3.

Hence, x ∈ C(V4) if and only if

x4,1 = 0

x3,2 = 0

x2,3 = c10 · x3,2 = 0

x1,4 = c10 · x2,3 = 0

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c11 · x3,2

= c8 · x4,0 + c9 · x3,1 + c10 · x2,2

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3 + c11 · x2,3

= c8 · x3,1 + c9 · x2,2 + c10 · x1,3.
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Note that these are the same equations we obtained when we computed C(V3). Hence,

C(V4) = C(V3) and dim(C(V4))− dim(V4) = 3.

Case 5.2 (p = 5): Fix c11, c12 ∈ Z5 and define

m7 =




0 0 0 c12 c8 + c9c10 + c11(c9 + c2
10)

0 0 0 c9 + c10c11 0

0 0 c11 0 0

0 1 0 0 0

0 0 0 0 0




,

and V4 = 〈V0,m4,m5,m6,m7〉.

Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each

element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V4 if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c12 · x4,1

x3,2 = c11 · x4,1

x2,3 = (c9 + c10c11)x4,1

x1,4 = (c8 + c9c10 + c11(c9 + c2
10))x4,1,

and that ∂2(x) ∈ V4 if and only if

x0,4 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c12 · x3,2

x4,1 = 0

x2,3 = c11 · x3,2

x1,4 = (c9 + c10c11)x3,2

0 = (c8 + c9c10 + c11(c9 + c2
10))x3,2.

Hence, x ∈ C(V4) if and only if

x4,1 = 0

x3,2 = c11 · x4,1 = 0

x2,3 = (c9 + c10c11)x4,1 = 0

x1,4 = (c8 + c9c10 + c11(c9 + c2
10))x4,1 = 0

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c12 · x4,1

= c8 · x4,0 + c9 · x3,1 + c10 · x2,2
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x0,4 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c12 · x3,2

= c8 · x4,0 + c9 · x3,1 + c10 · x2,2.

Note that these are the same equations we obtained when we computed C(V3). Hence,

C(V4) = C(V3) and dim(C(V4))− dim(V4) = 3.

Case 5.3 (p = 5): Fix c11, c12, c13 ∈ Z5 and define

m7 =




0 0 0 c13 c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10)

0 0 0 c8 + c9c11 + c10c12 0

0 0 c12 0 0

0 c11 0 0 0

1 0 0 0 0




,

and V4 = 〈V, m4,m5,m6,m7〉.

Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each

element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.
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Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V4 if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2

x4,1 = 0

x3,2 = 0

x2,3 = 0

x1,4 = 0,

and that ∂2(x) ∈ V4 if and only if

x0,4 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c13 · x3,2 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2.

We do not need any more equations than this since we can readily see that

even in this case, we have the same equations we did when computing C(V3). Hence,

C(V4) = C(V3) and dim(C(V4)) − dim(V4) = 3. The difference for this case was

that we “ran out of room”: the (4,0)-entry of the matrix ∂1(x) is 0. This forced the

coefficient on m7 in the expansion of ∂1(x) to be 0. This essentially destroyed any

chance of our centralizer getting larger since entries x4,1 = x3,2 = x2,3 = x1,4 of the
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matrix x depend solely on m7. However, suppose that we were working with larger

matrices, say 7 × 7, over a larger field Z7. Then the 5th anti-diagonal would not be

the main anti-diagonal and there might be a possibility for growth.

To this end, temporarily let p = 7 and consider the pattern

α3 =




• • • 0 0 0 0

• • 0 0 0 0 0

• 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




and write V0 = V (α3). Further, fix non-zero scalars c8, c9, c10 ∈ Z7 and define the

matrices

m4 =




0 0 0 c8 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, m5 =




0 0 0 c9 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,
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m6 =




0 0 0 c10 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

and V3 = 〈V0,m4,m5,m6〉. Using the same reasoning as before, we define

v2 =




0 0 0 0 c8c10 0 0

0 0 0 c8 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, v3 =




0 0 0 0 c8 + c9c10 0 0

0 0 0 c9 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,
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and v4 =




0 0 0 0 c9 + c2
10 0 0

0 0 0 c10 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

and note that C(V3) = 〈V (β3), v2, v3, v4〉 and dim(C(V3)) − dim(V3) = 4. We now

have three cases which mirror the previous three that we investigated.

Case 5.1 (p = 7): Fix c11 ∈ Z7 and define

m7 =




0 0 0 c11 c9 + c2
10 0 0

0 0 0 c10 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

and V4 = 〈V0,m4,m5,m6,m7〉. We have C(V4) = C(V3) for the same reasons C(V4) =

C(V3) in the case when p = 5.
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Case 5.2 (p = 7): Fix c11, c12 ∈ Z5 and define

m7 =




0 0 0 c12 c8 + c9c10 + c11(c9 + c2
10) 0 0

0 0 0 c9 + c10c11 0 0 0

0 0 c11 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

and V4 = 〈V0,m4,m5,m6,m7〉. We have C(V4) = C(V3) for the same reasons C(V4) =

C(V3) in the case when p = 5.

Case 5.3 (p = 7): Fix c11, c12, c13 ∈ Z5 and define

m7 =




0 0 0 c13 c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10) 0 0

0 0 0 c8 + c9c11 + c10c12 0 0 0

0 0 c12 0 0 0 0

0 c11 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

and V4 = 〈V, m4,m5,m6,m7〉.

120



Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each

element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 0

x1,0 x1,1 x1,2 x1,3 x1,4 0 0

x2,0 x2,1 x2,2 x2,3 0 0 0

x3,0 x3,1 x3,2 0 0 0 0

x4,0 x4,1 0 0 0 0 0

x5,0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4 0 0

x2,0 x2,1 x2,2 x2,3 0 0 0

x3,0 x3,1 x3,2 0 0 0 0

x4,0 x4,1 0 0 0 0 0

x5,0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 x0,5 0 0

x1,1 x1,2 x1,3 x1,4 0 0 0

x2,1 x2,2 x2,3 0 0 0 0

x3,1 x3,2 0 0 0 0 0

x4,1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V4 if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c13 · x5,0

x4,1 = c11 · x5,0

x3,2 = c12 · x5,0

x2,3 = (c8 + c9c11 + c10c12) · x5,0

x1,4 = (c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x5,0,

and that ∂2(x) ∈ V4 if and only if

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3 + c13 · x4,1

x3,2 = c11 · x4,1

x2,3 = c12 · x4,1

x1,4 = (c8 + c9c11 + c10c12) · x4,1

x0,5 = (c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x4,1.
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Hence, x ∈ C(V4) if and only if

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c13 · x5,0

x0,4 = c8 · x3,1 + c9 · x2,2 + c10 · x1,3 + c13 · x4,1

= c8c10 · x4,0 + (c8 + c9c10)x3,1 + (c9 + c2
10)x2,2 + c11c13 · x5,0

x4,1 = c11 · x5,0

x3,2 = c12 · x5,0 = c11 · x4,1 = c2
11 · x5,0

x2,3 = (c8 + c9c11 + c10c12) · x5,0 = c12 · x4,1 = c11c12 · x5,0

x1,4 = (c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x5,0

= (c8 + c9c11 + c10c12) · x4,1 = c11(c8 + c9c11 + c10c12)x5,0

x0,5 = (c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x4,1

= c11(c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x5,0.

Notice that the above equations imply the following equations

0 = (c12 − c2
11)x5,0

0 = ((c8 + c9c11 + c10c12)− c11c12)x5,0

0 = ((c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))− c11(c8 + c9c11 + c10c12))x5,0.

The above equations force us to consider the following coefficient relationships

c12 = c2
11

(c8 + c9c11 + c10c12) = c11c12

(c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10)) = c11(c8 + c9c11 + c10c12).
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If one of the above coefficient relationships does not hold, this would imply that

x5,0 = 0. This would yield that C(V4) = C(V3) and dim(C(V4))− dim(V4) = 3 as in

the other cases.

Now suppose that all three coefficient relationships hold. In other words,

suppose that the following equations hold:

c12 = c2
11

(c8 + c9c11 + c10c12) = c11c12 = c3
11

(c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10)) = c11(c8 + c9c11 + c10c12) = c4

11.

This further yields

x1,3 = c8 · x4,0 + c9 · x3,1 + c10 · x2,2 + c13 · x5,0

x0,4 = c8c10 · x4,0 + (c8 + c9c10)x3,1 + (c9 + c2
10)x2,2 + c11c13 · x5,0

x4,1 = c11 · x5,0

x3,2 = c2
11 · x5,0

x2,3 = c11c12 · x5,0 = c3
11 · x5,0

x1,4 = c11(c8 + c9c11 + c10c12)x5,0 = c4
11 · x5,0

x0,5 = c11(c8c10 + c11(c8 + c9c10) + c12(c9 + c2
10))x5,0 = c5

11 · x5,0.
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Thus, we define

v4 =




0 0 0 0 c11c13 c5
11 0

0 0 0 c13 c4
11 0 0

0 0 0 c3
11 0 0 0

0 0 c2
11 0 0 0 0

0 c11 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0




and note that C(V4) = 〈V (β3), v1, v2, v3, v4〉. We now make an observation. Suppose

that p and q are primes such that p < q. Suppose further that Vi is a doubly invariant

subspace of Mp×p(Zp) and V ′
i is a doubly invariant subspace of Mq×q(Zq) such that

Vi and V ′
i are “of the same form” (as in Cases 5.3 (p = 5) and 5.3 (p = 7)). Finally,

assume that Vi contains a matrix which has a non-zero entry in the (p− 1)th row or

the (p− 1)th column. Then it may very well be the case that C(Vi+1) = C(Vi) while

C(V ′
i+1) 6= C(V ′

i ). Stating this more loosely, whether or not one is “running into the

side of the matrix” affects the computation of the centralizer of a given subspace.

6.4 The Fourth Wave Pattern

This pattern will not be fully explored. After one iteration of our algorithm, we will

define Case 1, Case 2, Case 3, and Case 4 since there will be four different ways to

define the matrix m1. After one iteration of our algorithm for Cases 1, 2, 3, and 4,

we will be able to treat them simultaneously. Hence, we will combine them into a

125



single case, which we will call Case 5. Case 5 will then be subdivided into Case 5.1,

Case 5.2, Case 5.3, Case 5.4, Case 5.5, and Case 5.6 since there will be six different

ways to define the matrices m2 and m3. We shall iterate our algorithm once for Case

5.1 through Case 5.6. Case 6 will be derived from a subset of the subcases of Case

5. Case 6 shall be subdivided into Case 6.1, Case 6.2, Case 6.3, and Case 6.4 due to

the different ways one will be able to define the matrices m4, m5, and m6. We will

iterate our algorithm once on each of these cases. Similarly, Case 7 will be derived

from a subset of the subcases of Case 6. We shall iterate our algorithm once for Case

7 and then cease investigation of this pattern.

We define the pattern

α4 =




• • • • 0

• • • 0 0

• • 0 0 0

• 0 0 0 0

0 0 0 0 0




and write V0 = V (α4). Clearly, C(V0) = V (β4) where

β4 =




• • • • •

• • • • 0

• • • 0 0

• • 0 0 0

• 0 0 0 0




.
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Thus we want the one-dimensional good subspaces of Z5 × Z5 × Z5 × Z5 × Z5. From

our construction of such spaces in Chapter III, we know that these take four different

forms. Hence, we must break up our investigation into cases.

Case 1: Fix scalars c1, c2, c3, c4 ∈ Z5 such that (c1, c2, c3, c4) 6= (0, 0, 0, 0) and

define

m1 =




0 0 0 0 c4

0 0 0 c3 0

0 0 c2 0 0

0 c1 0 0 0

1 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.
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Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x4,1 = 0

x3,2 = 0

x2,3 = 0

x1,4 = 0.

At this point, we do not need any more equations to conclude that C(V1) = C(V0) and

dim(C(V1))−dim(V1) = 4. Note once again that “running into the wall of the matrix”

has obstructed the centralizer from getting larger. In fact, we might have even had

c2 = c2
1, c3 = c3

1, and c4 = c4
1 and it would still be the case that C(V1) = C(V0). In

other words, even if the entries on the anti-diagonal of m1 had formed a geometric

sequence it would still be the case that C(V1) = C(V0).
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Case 2: Fix scalars c1, c2, c3 ∈ Z5 such that (c1, c2, c3) 6= (0, 0, 0) and define

m1 =




0 0 0 0 c3

0 0 0 c2 0

0 0 c1 0 0

0 1 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x3,2 = c1 · x4,1

x2,3 = c2 · x4,1

x1,4 = c3 · x4,1,

and that ∂2(x) ∈ V1 if and only if

x4,1 = 0

x2,3 = c1 · x3,2

x1,4 = c2 · x3,2

0 = c3 · x3,2.

Hence, x ∈ C(V1) if and only if

x4,1 = 0

x3,2 = c1 · x4,1 = 0

x2,3 = c2 · x4,1 = 0

x1,4 = c3 · x4,1 = 0.

Thus, C(V1) = C(V0) and dim(C(V1))− dim(V1) = 4.
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Case 3: Fix scalars c1, c2 ∈ Z5 such that (c1, c2) 6= (0, 0) and define

m1 =




0 0 0 0 c2

0 0 0 c1 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x4,1 = 0

x2,3 = c1 · x3,2

x1,4 = c2 · x3,2,

and that ∂2(x) ∈ V1 if and only if

x4,1 = 0

x3,2 = 0

x1,4 = c1 · x2,3

0 = c2 · x2,3.

Hence, x ∈ C(V1) if and only if

x4,1 = 0

x3,2 = 0

x2,3 = c1 · x3,2 = 0

x1,4 = c2 · x3,2 = 0.

Thus, C(V1) = C(V0) and dim(C(V1))− dim(V1) = 4.
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Case 4: Fix a non-zero scalar c1 ∈ Z5 and define

m1 =




0 0 0 0 c1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V1 = 〈V0,m1〉.

Let us now compute the centralizer of V1. By Lemma 14 in Chapter II, each

element of C(V1) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V1) if and only if ∂1(x) ∈ V1 and ∂2(x) ∈ V1. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

133



Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V1 if and only if

x4,1 = 0

x3,2 = 0

x1,4 = c2 · x2,3,

and that ∂2(x) ∈ V1 if and only if

x4,1 = 0

x3,2 = 0

x2,3 = 0

0 = c1 · x1,4.

Hence, x ∈ C(V1) if and only if

x4,1 = 0

x3,2 = 0

x2,3 = 0

x1,4 = c1 · x2,3 = 0.

Thus, C(V1) = C(V0) and dim(C(V1))− dim(V1) = 4.

Notice how in each of the above subcases, it does not matter what type of

matrix we use to create V1. We always obtained the result that C(V1) = C(V0). This

is in sharp contrast to other patterns. In cases where there exists a non-zero c ∈ Zp

such that (i,0)-entry of the matrix we use to create V1 is 1 and the (i− j, j)-entry is

cj then it is always the case that C(V1) 6= C(V0).
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All of the above cases ended in the same conclusion. Hence, we combine them

into a single case, Case 5.

Case 5: We now seek the 2-dimensional good subspaces of Z5 × Z5 × Z5 ×

Z5 × Z5. From Chapter III, there are six different ways we can do this depending on

what our set of leading positions is. That is, our set of leading positions can either

be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, or {3, 4}. As such, we have six subcases to

consider.

Case 5.1: Suppose that our set of leading positions is {1, 2}, fix c5, c6, c7, c8, c9, c10 ∈

Z5 such that (c5, c6, c7) 6= (0, 0, 0) and (c8, c9, c10) 6= (0, 0, 0) and define

m2 =




0 0 0 0 c7

0 0 0 c6 0

0 0 c5 0 0

0 0 0 0 0

1 0 0 0 0




and m3 =




0 0 0 0 c10

0 0 0 c9 0

0 0 c8 0 0

0 1 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.
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Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x3,2 = c8 · x4,1

x2,3 = c9 · x4,1

x1,4 = c10 · x4,1,

and that ∂2(x) ∈ V2 if and only if

x2,3 = c5 · x4,1 + c8 · x3,2

x1,4 = c6 · x4,1 + c9 · x3,2

0 = c7 · x4,1 + c10 · x3,2.

Hence, x ∈ C(V2) if and only if

x3,2 = c8 · x4,1

x2,3 = c5 · x4,1 + c8 · x3,2 = (c5 + c2
8)x4,1 = c9 · x4,1

x1,4 = c6 · x4,1 + c9 · x3,2 = (c6 + c8c9)x4,1 = c10 · x4,1

0 = c7 · x4,1 + c10 · x3,2 = (c7 + c8c10)x4,1.
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Note that the above system of equations implies the following system of equations

0 = ((c5 + c2
8)− c9)x4,1

0 = ((c6 + c8c9)− c10)x4,1

0 = (c7 + c8c10)x4,1.

The above equations force us to consider the following coefficient relationships

(c5 + c2
8) = c9

(c6 + c8c9) = c10

−c7 = c8c10.

If one of the above coefficient relationships does not hold, then it must be that

x4,1 = 0. This would imply that C(V2) = C(V0) and dim(C(V2))− dim(V2) = 3.

If all three of the above coefficient relationships hold, then we define

v1 =




0 0 0 0 0

0 0 0 0 c6 + c8c9

0 0 0 c5 + c2
8 0

0 0 c8 0 0

0 1 0 0 0




,

and note that C(V2) = 〈C(β4), v1〉 and dim(C(V2)) − dim(V2) = 4. Hence, we fix
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c11, c12, c13 ∈ Z5 and define

m4 =




0 0 0 0 c13

0 0 0 c12 c6 + c8c9

0 0 c11 c5 + c2
8 0

0 0 c8 0 0

0 1 0 0 0




.

and V3 = 〈V0,m2,m3,m4〉.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3 0

x4,0 x4,1 x4,2 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3 0

x4,0 x4,1 x4,2 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 x2,4 0

x3,1 x3,2 x3,3 0 0

x4,1 x4,2 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x3,2 = c8 · x4,1

x2,3 = c9 · x4,1

x1,4 = c10 · x4,1

x4,2 = 0

x3,3 = 0

x2,4 = 0,

and that ∂2(x) ∈ V3 if and only if

x2,3 = c5 · x4,1 + c8 · x3,2 + c11 · x4,2 = c5 · x4,1 + c8 · x3,2

x1,4 = c6 · x4,1 + c9 · x3,2 + c12 · x4,2 = c6 · x4,1 + c9 · x3,2

x3,3 = c8 · x4,2

x2,4 = (c5 + c2
8)x4,2

0 = c7 · x4,1 + c10 · x3,2.

Note that it must the case that x4,2 = x3,3 = x2,4 = 0. Also, for the other entries, we

have the same equations we obtained when we computed C(V2). Thus, C(V3) = C(V2)

and dim(C(V3))− dim(V3) = 3. This is as far as this case has been investigated.
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Case 5.2: Suppose that our set of leading positions is {1, 3}, fix c5, c6, c7, c8, c9 ∈

Z5 such that (c5, c6, c7) 6= (0, 0, 0) and (c8, c9) 6= (0, 0) and define

m2 =




0 0 0 0 c7

0 0 0 c6 0

0 0 0 0 0

0 c5 0 0 0

1 0 0 0 0




and m3 =




0 0 0 0 c9

0 0 0 c8 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x4,1 = 0

x2,3 = c8 · x3,2

x1,4 = c9 · x3,2,

and that ∂2(x) ∈ V2 if and only if

x3,2 = c5 · x4,1

x1,4 = c6 · x4,1 + c8 · x2,3

0 = c7 · x4,1 + c9 · x2,3.

Hence, x ∈ C(V2) if and only if

x4,1 = 0

x3,2 = c5 · x4,1 = 0

x2,3 = c8 · x3,2 = 0

x1,4 = c9 · x3,2 = 0.

Thus, C(V2) = C(V0) and dim(C(V2))− dim(V2) = 3. This is as far as this case has

been investigated.
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Case 5.3: Suppose that our set of leading positions is {1, 4}. Fix

c5, c6, c7, c8 ∈ Z5 such that (c5, c6, c7) 6= (0, 0, 0) and c8 6= 0 and define

m2 =




0 0 0 0 c7

0 0 0 0 0

0 0 c6 0 0

0 c5 0 0 0

1 0 0 0 0




and m3 =




0 0 0 0 c8

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x4,1 = 0

x3,2 = 0

x1,4 = c8 · x2,3,

and that ∂2(x) ∈ V2 if and only if

x3,2 = c5 · x4,1

x2,3 = c6 · x4,1

0 = c7 · x4,1 + c8 · x1,4.

Hence, x ∈ C(V2) if and only if

x4,1 = 0

x3,2 = 0

x2,3 = c6 · x4,1 = 0

x1,4 = c8 · x2,3 = 0.

Thus, C(V2) = C(V0) and dim(C(V2))− dim(V2) = 3. This is as far as this case has

been investigated.
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Case 5.4: Suppose that our set of leading positions is {2, 3}, fix

c5, c6, c7, c8 ∈ Z5 such that (c5, c6) 6= (0, 0) and (c7, c8) 6= (0, 0) and define

m2 =




0 0 0 0 c6

0 0 0 c5 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




and m3 =




0 0 0 0 c8

0 0 0 c7 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x2,3 = c5 · x4,1 + c7 · x3,2

x1,4 = c6 · x4,1 + c8 · x3,2,

and that ∂2(x) ∈ V2 if and only if

x4,1 = 0

x1,4 = c5 · x3,2 + c7 · x2,3

0 = c6 · x3,2 + c8 · x2,3.

Hence, x ∈ C(V2) if and only if

x4,1 = 0

x2,3 = c5 · x4,1 + c7 · x3,2 = c7 · x3,2

x1,4 = c6 · x4,1 + c8 · x3,2 = c8 · x3,2

= c5 · x3,2 + c7 · x2,3 = (c5 + c2
7)x3,2

0 = c6 · x3,2 + c8 · x2,3 = (c6 + c7c8)x3,2.

Note that the above system of equations implies the following system of equations

0 = ((c5 + c2
7)− c8)x3,2

0 = (c6 + c7c8)x3,2.

The above equations force us to consider the following coefficient relationships

(c5 + c2
7) = c8

−c6 = c7c8.
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If one of the above coefficient relationships does not hold, then it must be that

x3,2 = 0. This would imply that C(V2) = C(V0) and dim(C(V2))− dim(V2) = 3.

If both of the above coefficient relationships hold, then we define

v1 =




0 0 0 0 0

0 0 0 0 c5 + c2
7

0 0 0 c7 0

0 0 1 0 0

0 0 0 0 0




.

and note that C(V2) = 〈C(β4), v1〉 and dim(C(V2)) − dim(V2) = 4. This is as far as

this case has been investigated.

Case 5.5: Suppose that our set of leading positions is {2, 4}. Fix c5, c6, c7 ∈ Z5

such that (c5, c6) 6= (0, 0) and c7 6= 0 and define

m2 =




0 0 0 0 c6

0 0 0 0 0

0 0 c5 0 0

0 1 0 0 0

0 0 0 0 0




and m3 =




0 0 0 0 c7

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.

Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each
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element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x3,2 = c5 · x4,1

x1,4 = c6 · x4,1 + c7 · x2,3,

and that ∂2(x) ∈ V2 if and only if

x4,1 = 0

x2,3 = c5 · x3,2

0 = c6 · x3,2 + c7 · x1,4.
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Hence, x ∈ C(V2) if and only if

x4,1 = 0

x3,2 = c5 · x4,1 = 0

x2,3 = c5 · x3,2 = 0

x1,4 = c6 · x4,1 + c7 · x2,3 = 0.

Thus, C(V2) = C(V0) and dim(C(V2))− dim(V2) = 3. This is as far as this case has

been investigated.

Case 5.6: Suppose that our set of leading positions is {3, 4}. Fix non-zero

scalars c5, c6 ∈ Z5 and define

m2 =




0 0 0 0 c5

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




and m3 =




0 0 0 0 c6

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V2 = 〈V0,m2,m3〉.
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Let us now compute the centralizer of V2. By Lemma 14 in Chapter II, each

element of C(V2) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V2) if and only if ∂1(x) ∈ V2 and ∂2(x) ∈ V2. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V2 if and only if

x4,1 = 0

x1,4 = c5 · x3,2 + c6 · x2,3,

and that ∂2(x) ∈ V2 if and only if

x3,2 = 0

0 = c5 · x2,3 + c6 · x1,4.
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Hence, x ∈ C(V2) if and only if

x4,1 = 0

x3,2 = 0

x1,4 = c5 · x3,2 + c6 · x2,3 = c6 · x2,3

0 = c5 · x2,3 + c6 · x1,4 = (c5 + c2
6)x2,3.

Hence, we have two possibilities. If −c5 6= c2
6, then x2,3 = 0 and C(V2) = C(V0). This

further implies that dim(C(V2))− dim(V2) = 3. If −c5 = c2
6, then we define

v1 =




0 0 0 0 0

0 0 0 0 c6

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




and note that C(V2) = 〈C(V0), v1〉. This is as far as this case has been investigated.

We now make an observation from our survey of the different centralizers for

V2 from Case 5.1 through Case 5.6. When our set of leading positions consists of

two integers which differ only by 1 ({1, 2}, {2, 3}, {3, 4}), there is always the possi-

bility that C(V2) 6= C(V1). However, this possibility always depends on one or more

coefficient relationships. Also, when our set of leading positions consists of two inte-

gers that differ by more than 1 ({1, 3}, {1, 4}, {2, 4}), then it is always the case that

C(V2) = C(V1).
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Case 6: We shall now investigate the 3-dimensional good subspaces of Z5 ×

Z5 × Z5 × Z5 × Z5. From Chapter III, there are four different ways we can do this

depending on what our set of leading positions is. That is, our set of leading positions

can either be {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, or {2, 3, 4}. As such, we have four subcases

to consider.

Case 6.1: Suppose that our set of leading positions is {1, 2, 3}. Fix c1, c2, c3,

c4, c5, c6 ∈ Z5 such that (c1, c2) 6= (0, 0), (c3, c4) 6= (0, 0), and (c5, c6) 6= (0, 0) and

define

m1 =




0 0 0 0 c2

0 0 0 c1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




, m2 =




0 0 0 0 c4

0 0 0 c3 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




,

m3 =




0 0 0 0 c6

0 0 0 c5 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

and V3 = 〈V0,m1,m2,m3〉.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each
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element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x2,3 = c3 · x4,1 + c5 · x3,2

x1,4 = c4 · x4,1 + c6 · x3,2,

and that ∂2(x) ∈ V3 if and only if

x1,4 = c1 · x4,1 + c3 · x3,2 + c5 · x2,3

0 = c2 · x4,1 + c4 · x3,2 + c6 · x2,3.
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Hence, x ∈ C(V3) if and only if

x2,3 = c3 · x4,1 + c5 · x3,2

x1,4 = c1 · x4,1 + c3 · x3,2 + c5 · x2,3 = (c1 + c3c5)x4,1 + (c3 + c2
5)x3,2

= c4 · x4,1 + c6 · x3,2

0 = c2 · x4,1 + c4 · x3,2 + c6 · x2,3 = (c2 + c3c6)x4,1 + (c4 + c5c6)x3,2.

Note that the above system of equations implies the following system of equations

0 = (c1 + c3c5 − c4)x4,1 + (c3 + c2
5 − c6)x3,2

0 = (c2 + c3c6)x4,1 + (c4 + c5c6)x3,2.

Much like Cases 4.1.1 through 4.1.4, the above identities grant the possibility of many

different centralizers of V3 that are dependent upon the various relationships of the

coefficients involved. This is as far as this case has been investigated.

Case 6.2: Suppose that our set of leading positions is {1, 2, 4}. Fix c1, c2, c3, c4, c5 ∈

Z5 such that (c1, c2) 6= (0, 0), (c3, c4) 6= (0, 0), and c5 6= 0 and define

m1 =




0 0 0 0 c2

0 0 0 0 0

0 0 c1 0 0

0 0 0 0 0

1 0 0 0 0




, m2 =




0 0 0 0 c4

0 0 0 0 0

0 0 c3 0 0

0 1 0 0 0

0 0 0 0 0




,
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m3 =




0 0 0 0 c5

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and V3 = 〈V0,m1,m2,m3〉.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.
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Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x3,2 = c3 · x4,1

x1,4 = c4 · x4,1 + c5 · x2,3,

and that ∂2(x) ∈ V3 if and only if

x2,3 = c1 · x4,1 + c3 · x3,2

0 = c2 · x4,1 + c4 · x3,2 + c5 · x1,4.

Hence, x ∈ C(V3) if and only if

x3,2 = c3 · x4,1

x2,3 = c1 · x4,1 + c3 · x3,2 = (c1 + c2
3)x4,1

x1,4 = c4 · x4,1 + c5 · x2,3 = (c4 + c5(c1 + c2
3))x4,1

0 = c2 · x4,1 + c4 · x3,2 + c5 · x1,4 = (c2 + c3c4 + c5(c4 + c5(c1 + c2
3)))x4,1.

Hence, there are two possibilities. First, if c2 + c3c4 + c5(c4 + c5(c1 + c2
3)) 6= 0, then

x4,1 = 0. This would imply that C(V3) = C(V0) and dim(C(V3)) − dim(V3) = 2.

Second, if c2 + c3c4 + c5(c4 + c5(c1 + c2
3)) = 0, then we define

v1 =




0 0 0 0 0

0 0 0 0 c2 + c3c4 + c5(c4 + c5(c1 + c2
3))

0 0 0 c1 + c2
3 0

0 0 c3 0 0

0 1 0 0 0



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and note that C(V3) = 〈C(V0), v1〉 and dim(C(V3)) − dim(V3) = 3. This is as far as

this case has been investigated.

Case 6.3: Suppose that our set of leading positions is {1, 3, 4}. Fix c1, c2, c3, c4 ∈

Z5 such that (c1, c2) 6= (0, 0), c3 6= 0, and c4 6= 0 and define

m1 =




0 0 0 0 c2

0 0 0 0 0

0 0 0 0 0

0 c1 0 0 0

1 0 0 0 0




, m2 =




0 0 0 0 c3

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

m3 =




0 0 0 0 c4

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and V3 = 〈V0,m1,m2,m3〉.

Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.
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Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x4,1 = 0

x1,4 = c3 · x3,2 + c4 · x2,3,

and that ∂2(x) ∈ V3 if and only if

x3,2 = c1 · x4,1

0 = c2 · x4,1 + c3 · x2,3 + c4 · x1,4.

Hence, x ∈ C(V3) if and only if

x4,1 = 0

x3,2 = c1 · x4,1 = 0

x1,4 = c3 · x3,2 + c4 · x2,3 = c4 · x2,3

0 = c2 · x4,1 + c3 · x2,3 + c4 · x1,4 = (c3 + c2
4)x2,3.

Hence, there are two possibilities. First, if c3 + c2
4 6= 0, then x4,1 = 0. This would

imply that C(V3) = C(V0) and dim(C(V3)) − dim(V3) = 2. Second, if c3 + c2
4 = 0,
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then we define

v1 =




0 0 0 0 0

0 0 0 0 c4

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




and note that C(V3) = 〈C(V0), v1〉 and dim(C(V3)) − dim(V3) = 3. This is as far as

this case has been investigated.

Case 6.4: Suppose that our set of leading positions is {2, 3, 4}. Fix c1, c2, c3,∈

Z5 such that c1 6= 0, c2 6= 0, and c3 6= 0 and define

m1 =




0 0 0 0 c1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




, m2 =




0 0 0 0 c2

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




,

m3 =




0 0 0 0 c3

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and V3 = 〈V0,m1,m2,m3〉.
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Let us now compute the centralizer of V3. By Lemma 14 in Chapter II, each

element of C(V3) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V3) if and only if ∂1(x) ∈ V3 and ∂2(x) ∈ V3. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V3 if and only if

x1,4 = c1 · x4,1 + c2 · x3,2 + c3 · x2,3,

and that ∂2(x) ∈ V3 if and only if

x4,1 = 0

0 = c1 · x3,2 + c2 · x2,3 + c3 · x1,4.
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Hence, x ∈ C(V3) if and only if

x4,1 = 0

x1,4 = c1 · x4,1 + c2 · x3,2 + c3 · x2,3 = c2 · x3,2 + c3 · x2,3

0 = c1 · x3,2 + c2 · x2,3 + c3 · x1,4 = (c1 + c2c3)x3,2 + (c2 + c2
3)x2,3.

The last equation listed above makes this case much like Case 1. It should be clear

that the last equation above grants the possibility of different centralizers of V3 de-

pendent upon the various relationships of the coefficients involved. This is as far as

this case has been investigated.

Case 7: Finally we shall investigate the 4-dimensional good subspaces of

Zp × Zp × Zp × Zp × Zp. From Chapter III, there is only one such subspace. Fix

non-zero scalars c1, c2, c3, c4 ∈ Z5 and define V4 = 〈V0,m1,m2,m3,m4〉 where

m1 =




0 0 0 0 c1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




, m2 =




0 0 0 0 c2

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




,

m3 =




0 0 0 0 c3

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0




, and m4 =




0 0 0 0 c4

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.
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Let us now compute the centralizer of V4. By Lemma 14 in Chapter II, each

element of C(V4) has the form

x =




x0,0 x0,1 x0,2 x0,3 x0,4

x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0




.

Note that x ∈ C(V4) if and only if ∂1(x) ∈ V4 and ∂2(x) ∈ V4. Observe that

∂1(x) =




x1,0 x1,1 x1,2 x1,3 x1,4

x2,0 x2,1 x2,2 x2,3 0

x3,0 x3,1 x3,2 0 0

x4,0 x4,1 0 0 0

0 0 0 0 0




and ∂2(x) =




x0,1 x0,2 x0,3 x0,4 0

x1,1 x1,2 x1,3 x1,4 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 0 0 0

x4,1 0 0 0 0




.

Using Lemma 7 in Chapter III, we see that ∂1(x) ∈ V4 if and only if

x1,4 = c2 · x4,1 + c3 · x3,2 + c4 · x2,3,

and that ∂2(x) ∈ V4 if and only if

0 = c1 · x4,1 + c2 · x3,2 + c3 · x2,3 + c4 · x1,4.

Hence, x ∈ C(V4) if and only if

x1,4 = c2 · x4,1 + c3 · x3,2 + c4 · x2,3

0 = c1 · x4,1 + c2 · x3,2 + c3 · x2,3 + c4 · x1,4

= (c1 + c2c4)x4,1 + (c2 + c3c4)x3,2 + (c3 + c2
4)x2,3.

161



The last equation listed above makes this case much like Case 4.1.1 through Case

4.1.4. It should be clear that the above equation grants the possibility of different

centralizers of V4 dependent upon the various relationships of the coefficients involved.

This is as far as this case has been investigated.
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CHAPTER VII

CONCLUDING REMARKS

In this thesis we have described a method to enumerate and compute all of the doubly-

invariant subspaces ofM. We have done this completely for the cases p = 2 and p = 3

and partially for the case p = 5. While the case p = 5 is much more complex than

previous cases, it is a much more interesting case. For future investigations, we now

describe a few ideas which may prove useful.

First, one should complete the case p = 5 as it will grant more insight into

the form of the subspaces of V as well as the centralizers of the those subspaces. Once

the case p = 5 is completed, one should compare cases p = 2, p = 3, and p = 5. We

hope that this examination will inspire some theorems which will apply to the case

of an arbitrary prime p.

Second, let Vi ∈ V and m ∈ C(Vi) − Vi and write Vi+1 = 〈Vi,m〉. Suppose

that C(Vi) is a proper subspace of C(Vi+1). Then we have observed time and again

that there is almost always a matrix contained in Vi whose non-zero entries have a

geometric relationship. This type of relationship has almost always guaranteed that

C(Vi) is a proper subspace of C(Vi+1). This connection needs to be explored further.

Third, fix primes p and q such that p < q. Suppose V ∈ Mp×p(Zp) and

V ′ ∈ Mq×q(Zq) are doubly invariant matrices which “have the same form”. Assume
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further that V contains a matrix which has a non-zero entry in the (p− 1)th row or

(p− 1)th column. We have observed the centralizer of V might be different than the

centralizer of V ′. The circumstances under which this type of difference occurs needs

to be studied as well.

Finally, note that many of the computations and certainly the linear trans-

formations have a very mechanical feel to them. With further refinement, it is quite

possible that these may become automated. If a computer were able to do more of

the computational work for this investigation, it would greatly aid the investigator.

This would free up the investigator to focus on looking for theorems concerning the

subspaces of V .

We hope that the results in this thesis and the above comments will prove

useful in further investigations of this problem.
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